ﻻ يوجد ملخص باللغة العربية
In this paper, we discuss five parameters that indicate the inhomogeneity of a stack of parallel isotropic layers. We show that, in certain situations, they provide further insight into the intrinsic inhomogeneity of a Backus medium, as compared to the Thomsen parameters. Additionally, we show that the Backus average of isotropic layers is isotropic if and only if $gamma=0$. This is in contrast to parameters $delta$ and $epsilon$, whose zero values do not imply isotropy.
In general, the Backus average of an inhomogeneous stack of isotropic layers is a transversely isotropic medium. Herein, we examine a relation between this inhomogeneity and the strength of resulting anisotropy, and show that, in general, they are pr
Elastic anisotropy might be a combined effect of the intrinsic anisotropy and the anisotropy induced by thin-layering. The Backus average, a useful mathematical tool, allows us to describe such an effect quantitatively. The results are meaningful onl
Various real-life networks exhibit degree correlations and heterogeneous structure, with the latter being characterized by power-law degree distribution $P(k)sim k^{-gamma}$, where the degree exponent $gamma$ describes the extent of heterogeneity. In
We consider a long-wave transversely isotropic (TI) medium equivalent to a series of finely parallel-layered isotropic layers, obtained using the citet{Backus} average. In such a TI equivalent medium, we verify the citet{Berrymanetal} method of indic
In this paper, we consider a long-wave equivalent medium to a finely parallel-layered inhomogeneous medium, obtained using the Backus average. Following the work of Postma and Backus, we show explicitly the derivations of the conditions to obtain the