ﻻ يوجد ملخص باللغة العربية
We consider a long-wave transversely isotropic (TI) medium equivalent to a series of finely parallel-layered isotropic layers, obtained using the citet{Backus} average. In such a TI equivalent medium, we verify the citet{Berrymanetal} method of indicating fluids and the authors method citep{Adamus}, using anisotropy parameter $varphi$. Both methods are based on detecting variations of the Lame parameter, $lambda$, in a series of thin isotropic layers, and we treat these variations as potential change of the fluid content. To verify these methods, we use Monte Carlo (MC) simulations; for certain range of Lame parameters $lambda$ and $mu$---relevant to particular type of rocks---we generate numerous combinations of these parameters in thin layers and, after the averaging process, we obtain their TI media counterparts. Subsequently, for each of the aforementioned media, we compute $varphi$ and citet{Thomsen} parameters $epsilon$ and $delta$. We exhibit $varphi$, $epsilon$ and $delta$ in a form of cross-plots and distributions that are relevant to chosen range of $lambda$ and $mu$. We repeat that process for various ranges of Lame parameters. Additionally, to support the MC simulations, we consider several numerical examples of growing $lambda$, by using scale factors. As a result of the thorough analysis of the relations among $varphi$, $epsilon$ and $delta$, we find eleven fluid detectors that compose a new fluid detection method. Based on these detectors, we show the quantified pattern of indicating change of the fluid content.
In this paper, we consider a long-wave equivalent medium to a finely parallel-layered inhomogeneous medium, obtained using the Backus average. Following the work of Postma and Backus, we show explicitly the derivations of the conditions to obtain the
In general, the Backus average of an inhomogeneous stack of isotropic layers is a transversely isotropic medium. Herein, we examine a relation between this inhomogeneity and the strength of resulting anisotropy, and show that, in general, they are pr
Analytical formulas are derived to compute the first-order effects produced by plane inhomogeneities on the point source seismic response of a fluid-filled stratified porous medium. The derivation is achieved by a perturbation analysis of the poro-el
Since the seventies, several reconstruction techniques have been proposed, and are currently used, to extrapolate and quantify eruptive parameters from sampled deposit datasets. Discrete numbers of tephra ground loadings or stratigraphic records are
In this paper, we discuss five parameters that indicate the inhomogeneity of a stack of parallel isotropic layers. We show that, in certain situations, they provide further insight into the intrinsic inhomogeneity of a Backus medium, as compared to t