ﻻ يوجد ملخص باللغة العربية
Various real-life networks exhibit degree correlations and heterogeneous structure, with the latter being characterized by power-law degree distribution $P(k)sim k^{-gamma}$, where the degree exponent $gamma$ describes the extent of heterogeneity. In this paper, we study analytically the average path length (APL) of and random walks (RWs) on a family of deterministic networks, recursive scale-free trees (RSFTs), with negative degree correlations and various $gamma in (2,1+frac{ln 3}{ln 2}]$, with an aim to explore the impacts of structure heterogeneity on APL and RWs. We show that the degree exponent $gamma$ has no effect on APL $d$ of RSFTs: In the full range of $gamma$, $d$ behaves as a logarithmic scaling with the number of network nodes $N$ (i.e. $d sim ln N$), which is in sharp contrast to the well-known double logarithmic scaling ($d sim ln ln N$) previously obtained for uncorrelated scale-free networks with $2 leq gamma <3$. In addition, we present that some scaling efficiency exponents of random walks are reliant on degree exponent $gamma$.
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes
A simple and accurate relationship is demonstrated that links the average shortest path, nodes, and edges in a complex network. This relationship takes advantage of the concept of link density and shows a large improvement in fitting networks of all
A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here,
Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possib