ﻻ يوجد ملخص باللغة العربية
In general, the Backus average of an inhomogeneous stack of isotropic layers is a transversely isotropic medium. Herein, we examine a relation between this inhomogeneity and the strength of resulting anisotropy, and show that, in general, they are proportional to one another. There is an important case, however, in which the Backus average of isotropic layers results in an isotropic -- as opposed to a transversely isotropic -- medium. We show that it is a consequence of the same rigidity of layers, regardless of their compressibility. Thus, in general, the strength of anisotropy of the Backus average increases with the degree of inhomogeneity among layers, except for the case in which all layers exhibit the same rigidity.
In this paper, we discuss five parameters that indicate the inhomogeneity of a stack of parallel isotropic layers. We show that, in certain situations, they provide further insight into the intrinsic inhomogeneity of a Backus medium, as compared to t
Elastic anisotropy might be a combined effect of the intrinsic anisotropy and the anisotropy induced by thin-layering. The Backus average, a useful mathematical tool, allows us to describe such an effect quantitatively. The results are meaningful onl
We consider a long-wave transversely isotropic (TI) medium equivalent to a series of finely parallel-layered isotropic layers, obtained using the citet{Backus} average. In such a TI equivalent medium, we verify the citet{Berrymanetal} method of indic
Various real-life networks exhibit degree correlations and heterogeneous structure, with the latter being characterized by power-law degree distribution $P(k)sim k^{-gamma}$, where the degree exponent $gamma$ describes the extent of heterogeneity. In
The distance-redshift relation determined by means of gravitational waves in the clumpy universe is simulated numerically by taking into account the effects of gravitational lensing. It is assumed that all of the matter in the universe takes the form