ترغب بنشر مسار تعليمي؟ اضغط هنا

Preferential Attachment Graphs with Planted Communities

138   0   0.0 ( 0 )
 نشر من قبل Bruce Hajek
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A variation of the preferential attachment random graph model of Barabasi and Albert is defined that incorporates planted communities. The graph is built progressively, with new vertices attaching to the existing ones one-by-one. At every step, the incoming vertex is randomly assigned a label, which represents a community it belongs to. This vertex then chooses certain vertices as its neighbors, with the choice of each vertex being proportional to the degree of the vertex multiplied by an affinity depending on the labels of the new vertex and a potential neighbor. It is shown that the fraction of half-edges attached to vertices with a given label converges almost surely for some classes of affinity matrices. In addition, the empirical degree distribution for the set of vertices with a given label converges to a heavy tailed distribution, such that the tail decay parameter can be different for different communities. Our proof method may be of independent interest, both for the classical Barabasi -Albert model and for other possible extensions.



قيم البحث

اقرأ أيضاً

All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed.
We propose a random graph model with preferential attachment rule and emph{edge-step functions} that govern the growth rate of the vertex set. We study the effect of these functions on the empirical degree distribution of these random graphs. More sp ecifically, we prove that when the edge-step function $f$ is a emph{monotone regularly varying function} at infinity, the sequence of graphs associated to it obeys a power-law degree distribution whose exponent is related to the index of regular variation of $f$ at infinity whenever said index is greater than $-1$. When the regularly variation index is less than or equal to $-1$, we show that the proportion of vertices with degree smaller than any given constant goes to $0$ a. s..
A message passing algorithm is derived for recovering communities within a graph generated by a variation of the Barab{a}si-Albert preferential attachment model. The estimator is assumed to know the arrival times, or order of attachment, of the verti ces. The derivation of the algorithm is based on belief propagation under an independence assumption. Two precursors to the message passing algorithm are analyzed: the first is a degree thresholding (DT) algorithm and the second is an algorithm based on the arrival times of the children (C) of a given vertex, where the children of a given vertex are the vertices that attached to it. Comparison of the performance of the algorithms shows it is beneficial to know the arrival times, not just the number, of the children. The probability of correct classification of a vertex is asymptotically determined by the fraction of vertices arriving before it. Two extensions of Algorithm C are given: the first is based on joint likelihood of the children of a fixed set of vertices; it can sometimes be used to seed the message passing algorithm. The second is the message passing algorithm. Simulation results are given.
We consider the degree distributions of preferential attachment random graph models with choice similar to those considered in recent work by Malyshkin and Paquette and Krapivsky and Redner. In these models a new vertex chooses $r$ vertices according to a preferential rule and connects to the vertex in the selection with the $s$th highest degree. For meek choice, where $s>1$, we show that both double exponential decay of the degree distribution and condensation-like behaviour are possible, and provide a criterion to distinguish between them. For greedy choice, where $s=1$, we confirm that the degree distribution asympotically follows a power law with logarithmic correction when $r=2$ and shows condensation-like behaviour when $r>2$.
96 - Jonathan Jordan 2018
We extend the work of Antunovi{c}, Mossel and R{a}cz on competing types in preferential attachment models to include cases where the types have different fitnesses, which may be either multiplicative or additive. We will show that, depending on the v alues of the parameters of the models, there are different possible limiting behaviours depending on the zeros of a certain function. In particular we will show the existence of choices of the parameters where one type is favoured both by having higher fitness and by the type attachment mechanism, but the other type has a positive probability of dominating the network in the limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا