ترغب بنشر مسار تعليمي؟ اضغط هنا

Preferential attachment with choice

195   0   0.0 ( 0 )
 نشر من قبل Jonathan Jordan
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the degree distributions of preferential attachment random graph models with choice similar to those considered in recent work by Malyshkin and Paquette and Krapivsky and Redner. In these models a new vertex chooses $r$ vertices according to a preferential rule and connects to the vertex in the selection with the $s$th highest degree. For meek choice, where $s>1$, we show that both double exponential decay of the degree distribution and condensation-like behaviour are possible, and provide a criterion to distinguish between them. For greedy choice, where $s=1$, we confirm that the degree distribution asympotically follows a power law with logarithmic correction when $r=2$ and shows condensation-like behaviour when $r>2$.



قيم البحث

اقرأ أيضاً

We introduce a model of a preferential attachment based random graph which extends the family of models in which condensation phenomena can occur. Each vertex has an associated uniform random variable which we call its location. Our model evolves in discrete time by selecting $r$ vertices from the graph with replacement, with probabilities proportional to their degrees plus a constant $alpha$. A new vertex joins the network and attaches to one of these vertices according to a given probability associated to the ranking of their locations. We give conditions for the occurrence of condensation, showing the existence of phase transitions in $alpha$ below which condensation occurs. The condensation in our model differs from that in preferential attachment models with fitness in that the condensation can occur at a random location, that it can be due to a persistent hub, and that there can be more than one point of condensation.
In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attache d to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
We propose a random graph model with preferential attachment rule and emph{edge-step functions} that govern the growth rate of the vertex set. We study the effect of these functions on the empirical degree distribution of these random graphs. More sp ecifically, we prove that when the edge-step function $f$ is a emph{monotone regularly varying function} at infinity, the sequence of graphs associated to it obeys a power-law degree distribution whose exponent is related to the index of regular variation of $f$ at infinity whenever said index is greater than $-1$. When the regularly variation index is less than or equal to $-1$, we show that the proportion of vertices with degree smaller than any given constant goes to $0$ a. s..
We characterize the tail behavior of the distribution of the PageRank of a uniformly chosen vertex in a directed preferential attachment graph and show that it decays as a power law with an explicit exponent that is described in terms of the model pa rameters. Interestingly, this power law is heavier than the tail of the limiting in-degree distribution, which goes against the commonly accepted {em power law hypothesis}. This deviation from the power law hypothesis points at the structural differences between the inbound neighborhoods of typical vertices in a preferential attachment graph versus those in static random graph models where the power law hypothesis has been proven to hold (e.g., directed configuration models and inhomogeneous random digraphs). In addition to characterizing the PageRank distribution of a typical vertex, we also characterize the explicit growth rate of the PageRank of the oldest vertex as the network size grows.
We introduce a new model of preferential attachment with fitness, and establish a time reversed duality between the model and a system of branching-coalescing particles. Using this duality, we give a clear and concise explanation for the condensation phenomenon, in which unusually fit vertices may obtain abnormally high degree: it arises from a growth-extinction dichotomy within the branching part of the dual. We show further that the condensation is extensive. As the graph grows, unusually fit vertices become, each only for a limited time, neighbouring to a non-vanishing proportion of the current graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا