ﻻ يوجد ملخص باللغة العربية
A message passing algorithm is derived for recovering communities within a graph generated by a variation of the Barab{a}si-Albert preferential attachment model. The estimator is assumed to know the arrival times, or order of attachment, of the vertices. The derivation of the algorithm is based on belief propagation under an independence assumption. Two precursors to the message passing algorithm are analyzed: the first is a degree thresholding (DT) algorithm and the second is an algorithm based on the arrival times of the children (C) of a given vertex, where the children of a given vertex are the vertices that attached to it. Comparison of the performance of the algorithms shows it is beneficial to know the arrival times, not just the number, of the children. The probability of correct classification of a vertex is asymptotically determined by the fraction of vertices arriving before it. Two extensions of Algorithm C are given: the first is based on joint likelihood of the children of a fixed set of vertices; it can sometimes be used to seed the message passing algorithm. The second is the message passing algorithm. Simulation results are given.
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu
A variation of the preferential attachment random graph model of Barabasi and Albert is defined that incorporates planted communities. The graph is built progressively, with new vertices attaching to the existing ones one-by-one. At every step, the i
Random graph alignment refers to recovering the underlying vertex correspondence between two random graphs with correlated edges. This can be viewed as an average-case and noisy version of the well-known graph isomorphism problem. For the correlated
In this paper we investigate geometric properties of graphs generated by a preferential attachment random graph model with edge-steps. More precisely, at each time $tinmathbb{N}$, with probability $p$ a new vertex is added to the graph (a vertex-step
Resolving a conjecture of Abbe, Bandeira and Hall, the authors have recently shown that the semidefinite programming (SDP) relaxation of the maximum likelihood estimator achieves the sharp threshold for exactly recovering the community structure unde