ترغب بنشر مسار تعليمي؟ اضغط هنا

Compensation of aberration and speckle noise in quantitative phase imaging using lateral shifting and spiral phase integration

159   0   0.0 ( 0 )
 نشر من قبل YongKeun Park
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple and effective method to eliminate system aberrations and speckle noise in quantitative phase imaging. Using spiral integration, complete information about system aberration is calculated from three laterally shifted phase images. The present method is especially useful when measuring confluent samples in which acquisition of background area is challenging. To demonstrate validity and applicability, we present measurements of various types of samples including microspheres, HeLa cells, and mouse brain tissue. Working conditions and limitations are systematically analyzed and discussed.

قيم البحث

اقرأ أيضاً

An electronic speckle shearing phase-shifting pattern interferometer (ESSPPI) based on Michelson interferometer was based in this paper. A rotatable mirror driven by a step motor in one of its reflective arm is used to generate an adjustable shearing and the mirror driven by piezoelectric transducer (PZT) in the other reflective arm was used to realize phaseshifting. In the experiments, the deformation of an aluminum plate with the same extern-force on different positions and different forces on the same position is measured. Meanwhile, the phase distribution and phase-unwrap image of the aluminum plate with the extern-force on its center position is obtained by the four-step phase-shifting method.
341 - Azeem Ahmad , Nikhil Jayakumar , 2021
Quantitative phase microscopy (QPM) has found significant applications in the field of biomedical imaging which works on the principle of interferometry. The theory behind achieving interference in QPM with conventional light sources such as white li ght and lasers is very well developed. Recently, the use of dynamic speckle illumination (DSI) in QPM has attracted attention due to its advantages over conventional light sources such as high spatial phase sensitivity, single shot, scalable field of view (FOV) and resolution. However, the understanding behind obtaining interference fringes in QPM with DSI has not been convincingly covered previously. This imposes a constraint on obtaining interference fringes in QPM using DSI and limits its widespread penetration in the field of biomedical imaging. The present article provides the basic understanding of DSI through both simulation and experiments that is essential to build interference optical microscopy systems such as QPM, digital holographic microscopy and optical coherence tomography. Using the developed theory of DSI we demonstrate its capabilities of using non-identical objective lenses in both arms of the interference microscopy without degrading the interference fringe contrast and providing the flexibility to use user-defined microscope objective lens. It is also demonstrated that the interference fringes are not washed out over a large range of optical path difference (OPD) between the object and the reference arm providing competitive edge over low temporal coherence light sources. The theory and explanation developed here would enable wider penetration of DSI based QPM for applications in biology and material sciences.
We propose a novel quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We show that when a dynamical quantum system interacts with an external field, the phase information is imprinted in the state of the field in a detectable way. The contribution to the signal from photons that interact with the sample scales as $propto I_{p}^{1/2}$, where $I_{p}$ is the source intensity, compared to $propto I_{p}$ of classical diffraction. This makes imaging with weak-field possible, avoiding damage to delicate samples. A Schmidt decomposition of the state of the field can be used for image enhancement by reweighting the Schmidt modes contributions.
Label-Free Multiphoton Microscopy is a very powerful optical microscopy that can be applied to study samples with no need for exogenous fluorescent probes, keeping the main benefits of a Multiphoton approach, like longer penetration depths and intrin sic optical sectioning, while opening the possibility of serial examinations with different kinds of techniques. Among the many variations of Label-Free MPM, Higher Harmonic Generation (HHG) is one of the most intriguing due to its generally low photo-toxicity, which enables the examination of specimens particularly susceptible to photo-damages. HHG and common Two-Photon Microscopy (TPM) are well-established techniques, routinely used in several research fields. However, they require a significant amount of fine-tuning in order to be fully exploited and, usually, the optimized conditions greatly differ, making them quite difficult to perform in parallel without any compromise on the extractable information. Here we present our custom-built Multiphoton microscope capable of performing simultaneously TPM and HHG without any kind of compromise on the results thanks to two, separate, individually optimized laser sources with full chromatic aberration compensation. We also apply our setup to the examination of a plethora of ex vivo samples in order to prove the significant advantages of our approach.
154 - Amir Leshem , Michal Yemini 2017
We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the pha se noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا