ترغب بنشر مسار تعليمي؟ اضغط هنا

Demystifying speckle field quantitative phase microscopy

342   0   0.0 ( 0 )
 نشر من قبل Azeem Ahmad
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantitative phase microscopy (QPM) has found significant applications in the field of biomedical imaging which works on the principle of interferometry. The theory behind achieving interference in QPM with conventional light sources such as white light and lasers is very well developed. Recently, the use of dynamic speckle illumination (DSI) in QPM has attracted attention due to its advantages over conventional light sources such as high spatial phase sensitivity, single shot, scalable field of view (FOV) and resolution. However, the understanding behind obtaining interference fringes in QPM with DSI has not been convincingly covered previously. This imposes a constraint on obtaining interference fringes in QPM using DSI and limits its widespread penetration in the field of biomedical imaging. The present article provides the basic understanding of DSI through both simulation and experiments that is essential to build interference optical microscopy systems such as QPM, digital holographic microscopy and optical coherence tomography. Using the developed theory of DSI we demonstrate its capabilities of using non-identical objective lenses in both arms of the interference microscopy without degrading the interference fringe contrast and providing the flexibility to use user-defined microscope objective lens. It is also demonstrated that the interference fringes are not washed out over a large range of optical path difference (OPD) between the object and the reference arm providing competitive edge over low temporal coherence light sources. The theory and explanation developed here would enable wider penetration of DSI based QPM for applications in biology and material sciences.



قيم البحث

اقرأ أيضاً

We present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vi bration with a piezo-controlled stage, we record synthetic holograms on commercial confocal microscopes (Nikon, model: A1R; Zeiss: model: LSM-880), from which quantitative phase images are reconstructed. We demonstrate our technique by stain-free imaging of cervical (HeLa) and ovarian (ES-2) cancer cells and stem cell (mHAT9a) samples. Our technique has the potential to extend fluorescence imaging applications in confocal microscopy by providing label-free cell finding, monitoring cell morphology, as well as non-perturbing long-time observation of live cells based on quantitative phase contrast.
Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the opti cal memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.
High space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low cohe rence length light sources are generally implemented to achieve high spatial phase sensitivity in QPM at the cost of either reduced temporal resolution or smaller field of view (FOV). On the contrary, high temporal coherence light sources like lasers are capable of exploiting the full FOV of the QPM systems at the expense of less spatial phase sensitivity. In the present work, we employed pseudo-thermal light source (PTLS) in QPM which overcomes the limitations of conventional light sources. The capabilities of PTLS over conventional light sources are systematically studied and demonstrated on various test objects like USAF resolution chart and thin optical waveguide (height ~ 8 nm). The spatial phase sensitivity of QPM in case of PTLS is measured to be equivalent to that for white light source. The high-speed and large FOV capabilities of PTLS based QPM is demonstrated by high-speed imaging of live sperm cells that is limited by the camera speed and by imaging extra-ordinary large FOV phase imaging on histopathology placenta tissue samples.
High-resolution optical microscopy suffers from a low contrast in scattering media where a multiply scattered wave obscures a ballistic wave used for image formation. To extend the imaging depth, various gating operations - confocal, coherence, and p olarization gating - have been devised to filter out the multiply scattered wave. However, these gating methods are imperfect as they all act on the detection plane located outside a scattering medium. Here, we present a new gating scheme, called space gating, that rejects the multiply scattered wave directly at the object plane inside a scattering medium. Specifically, we introduced a 30 $mu$m-wide acoustic focus to the object plane and reconstructed a coherent image only with the ballistic wave modulated by acousto-optic interaction. This method allows us to reject the multiply scattered wave that the existing gating methods cannot filter out and improves the ratio of the ballistic wave to the multiply scattered wave by more than 100 times for a scattering medium more than 20 times thicker than its scattering mean free path. Using the coherent imaging technique based on space gating, we demonstrate the unprecedented imaging capability - phase imaging of optically transparent biological cells fully embedded within a scattering medium - with a spatial resolution of 1.5 $mu$m.
159 - Michael Atlan 2008
We report experimental results on heterodyne holographic microscopy of subwavelength-sized gold particles. The apparatus uses continuous green laser illumination of the metal beads in a total internal reflection configuration for dark-field operation . Detection of the scattered light at the illumination wavelength on a charge-coupled device array detector enables 3D localization of brownian particles in water
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا