ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and experiment of electronic speckle shearing phase-shifting pattern interferometer

65   0   0.0 ( 0 )
 نشر من قبل Tianhua Xu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An electronic speckle shearing phase-shifting pattern interferometer (ESSPPI) based on Michelson interferometer was based in this paper. A rotatable mirror driven by a step motor in one of its reflective arm is used to generate an adjustable shearing and the mirror driven by piezoelectric transducer (PZT) in the other reflective arm was used to realize phaseshifting. In the experiments, the deformation of an aluminum plate with the same extern-force on different positions and different forces on the same position is measured. Meanwhile, the phase distribution and phase-unwrap image of the aluminum plate with the extern-force on its center position is obtained by the four-step phase-shifting method.

قيم البحث

اقرأ أيضاً

Speckle interferometry is an established optical metrology tool for the characterization of rough objects. The raw phase, however, is impaired by the presence of phase singularities, making the unwrapping procedure ambiguous. In a Michelson setup, we tailor the spatial coherence of the light source, achieving a physical averaging of independent, mutually incoherent speckle fields. In the resulting raw phase, the systematic phase is preserved while the number of phase singularities is greatly reduced. Both interferometer arms are affected by the averaging. The reduction is sufficient to even allow the use of a standard unwrapping algorithm originally developed for smooth surfaces only.
We present a simple and effective method to eliminate system aberrations and speckle noise in quantitative phase imaging. Using spiral integration, complete information about system aberration is calculated from three laterally shifted phase images. The present method is especially useful when measuring confluent samples in which acquisition of background area is challenging. To demonstrate validity and applicability, we present measurements of various types of samples including microspheres, HeLa cells, and mouse brain tissue. Working conditions and limitations are systematically analyzed and discussed.
111 - K. Arndt , H. Augustin , P. Baesso 2020
The Mu3e experiment aims to find or exclude the lepton flavour violating decay $mu rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to $10^{8}$ muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements.
Recovering the wavelength from disordered speckle patterns has become an exciting prospect as a wavelength measurement method due to its high resolution and simple design. In previous studies, panel cameras have been used to detect the subtle differe nces between speckle patterns. However, the volume, bandwidth, sensitivity, and cost (in non-visible bands) associated with panel cameras have hindered their utility in broader applications, especially in high speed and low-cost measurements. In this work, we broke the limitations imposed by panel cameras by using a quadrant detector (QD) to capture the speckle images. In the scheme of QD detection, speckle images are directly filtered by convolution, where the kernel is equal to one quarter of a speckle pattern. First, we proposed an up-sampling algorithm to pre-process the QD data. Then a new convolution neural network (CNN) based algorithm, shallow residual network (SRN), was proposed to train the up-sampled images. The experimental results show that a resolution of 4 fm (~ 0.5 MHz) was achieved at 1550nm with an updating speed of ~ 1 kHz. More importantly, the SRN shows excellent robustness. The wavelength can be precisely reconstructed from raw QD data without any averaging, even where there exists apparent noise. The low-cost, simple structure, high speed and robustness of this design promote the speckle-based wavemeter to the industrial grade. In addition, without the restriction of panel cameras, it is believed that this wavemeter opens new routes in many other fields, such as distributed optical fiber sensors, optical communications, and laser frequency stabilization.
Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earths gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gr avitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species $^{85}$Rb/$^{87}$Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for $10^{-11}$ mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (819 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا