ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum phase-sensitive diffraction and imaging using entangled photons

121   0   0.0 ( 0 )
 نشر من قبل Shahaf Asban
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We show that when a dynamical quantum system interacts with an external field, the phase information is imprinted in the state of the field in a detectable way. The contribution to the signal from photons that interact with the sample scales as $propto I_{p}^{1/2}$, where $I_{p}$ is the source intensity, compared to $propto I_{p}$ of classical diffraction. This makes imaging with weak-field possible, avoiding damage to delicate samples. A Schmidt decomposition of the state of the field can be used for image enhancement by reweighting the Schmidt modes contributions.

قيم البحث

اقرأ أيضاً

68 - C. Altuzarra , A. Lyons , G. Yuan 2018
Plasmonics and metamaterials have recently been shown to allow the control and interaction with non-classical states of light, a rather counterintuitive finding given the high losses typically encountered in these systems. Here, we demonstrate a rang e of functionalities that are allowed with correlated and entangled photons that are used to illuminate multiple, overlaid patterns on plasmonic metasurfaces. Correlated photons allow to nonlocally determine the pattern that is imaged or, alternatively to un-scramble an image that is otherwise blurred. Entangled photons allow a more important functionality whereby the images imprinted on the metasurface are individually visible only when illuminated with one of the entangled photons. Correlated single photon imaging of functional metasurfaces could therefore promise advances towards the use of nanostructured subwavelength thin devices in quantum information protocols.
Optical interferometry has been a long-standing setup for characterization of quantum states of light. Both the linear and the nonlinear interferences can provide information about the light statistics an underlying detail of the light-matter interac tions. Here we demonstrate how interferometric detection of nonlinear spectroscopic signals may be used to improve the measurement accuracy of matter susceptibilities. Light-matter interactions change the photon statistics of quantum light, which are encoded in the field correlation functions. Application is made to the Hong-Ou-Mandel two-photon interferometer that reveals entanglement-enhanced resolution that can be achieved with existing optical technology.
Distributed quantum metrology can enhance the sensitivity for sensing spatially distributed parameters beyond the classical limits. Here we demonstrate distributed quantum phase estimation with discrete variables to achieve Heisenberg limit phase mea surements. Based on parallel entanglement in modes and particles, we demonstrate distributed quantum sensing for both individual phase shifts and an averaged phase shift, with an error reduction up to 1.4 dB and 2.7 dB below the shot-noise limit. Furthermore, we demonstrate a combined strategy with parallel mode entanglement and multiple passes of the phase shifter in each mode. In particular, our experiment uses six entangled photons with each photon passing the phase shifter up to six times, and achieves a total number of photon passes N=21 at an error reduction up to 4.7 dB below the shot-noise limit. Our research provides a faithful verification of the benefit of entanglement and coherence for distributed quantum sensing in general quantum networks.
Quantum imaging with undetected photons (QIUP) is a unique method of image acquisition where the photons illuminating the object are not detected. This method relies on quantum interference and spatial correlations between the twin photons to form an image. Here we present a detailed study of the resolution limits of position correlation enabled QIUP. We establish a quantitative relation between the spatial resolution and the twin photon position correlation in the spontaneous parametric down-conversion process (SPDC). Furthermore, we also quantitatively establish the roles that the wavelength of the undetected illumination field and the wavelength of the detected field play in the resolution. Like ghost imaging and unlike conventional imaging, the resolution limit imposed by the spatial correlation between twin photons in QIUP cannot be further improved by conventional optical techniques.
227 - Xingxiang Zhou 2001
We propose a novel scheme for nondistortion quantum interrogation (NQI), defined as an interaction-free measurement which preserves the internal state of the object being detected. In our scheme, two EPR entangled photons are used as the probe and po larization sensitive measurements are performed at the four ports of the Mach-Zehnder interferometer. In comparison with the previous single photon scheme, it is shown that the two photon approach has a higher probability of initial state preserving interrogation of an atom prepared in a quantum superposition. In the case that the presence of the atom is not successfully detected, the experiment can be repeated since the initial state of the atom is unperturbed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا