ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximum Caliber: a general variational principle for dynamical systems

109   0   0.0 ( 0 )
 نشر من قبل Purushottam Dixit
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review here {it Maximum Caliber} (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of {it Maximum Entropy} (Max Ent) is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of Non-Equilibrium Statistical Physics -- such as the Green-Kubo fluctuation-dissipation relations, Onsagers reciprocal relations, and Prigogines Minimum Entropy Production -- are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give recent examples of MaxCal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle, and some limitations.



قيم البحث

اقرأ أيضاً

There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of Maximum Entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results -including the Green-Kubo relations, Onsagers reciprocal relations of coupled flows, and Prigogines principle of minimum entropy production -in a way that is particularly simple. More importantly, because Max Cal does not require any notion of local equilibrium, or any notion of entropy dissipation, or even any restriction to material physics, it is more general than many traditional approaches. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Max Cal is not limited to materials and fluids; it also applies, for example, to flows and trafficking on networks more broadly.
We present a principled approach for estimating the matrix of microscopic rates among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a vari ational principle in which a path entropy is maximized over the distribution of all the possible trajectories, subject to basic kinetic constraints and some average dynamical observables. We show that this approach leads, under appropriate conditions, to the continuous-time master equation and a Smoluchowski-like equation that is valid for both equilibrium and non-equilibrium stationary states. We illustrate the method by computing the solvation dynamics of water molecules from molecular dynamics trajectories.
A variation principle for mass transport in solids is derived that recasts transport coefficients as minima of local thermodynamic average quantities. The result is independent of diffusion mechanism, and applies to amorphous and crystalline systems. This unifies different computational approaches for diffusion, and provides a framework for the creation of new approximation methods with error estimation. It gives a different physical interpretation of the Green function. Finally, the variational principle quantifies the accuracy of competing approaches for a nontrivial diffusion problem.
We study the nonextensive thermodynamics for open systems. On the basis of the maximum entropy principle, the dual power-law q-distribution functions are re-deduced by using the dual particle number definitions and assuming that the chemical potentia l is constant in the two sets of parallel formalisms, where the fundamental thermodynamic equations with dual interpretations of thermodynamic quantities are derived for the open systems. By introducing parallel structures of Legendre transformations, other thermodynamic equations with dual interpretations of quantities are also deduced in the open systems, and then several dual thermodynamic relations are inferred. One can easily find that there are correlations between the dual relations, from which an equivalent rule is found that the Tsallis factor is invariable in calculations of partial derivative with constant volume or constant entropy. Using this rule, more correlations can be found. And the statistical expressions of the Lagrange internal energy and pressure are easily obtained.
Dynamical systems often contain oscillatory forces or depend on periodic potentials. Time or space periodicity is reflected in the properties of these systems through a dependence on the parameters of their periodic terms. In this paper we provide a general theoretical framework for dealing with these kinds of systems, regardless of whether they are classical or quantum, stochastic or deterministic, dissipative or nondissipative, linear or nonlinear, etc. In particular, we are able to show that simple symmetry considerations determine, to a large extent, how their properties depend functionally on some of the parameters of the periodic terms. For the sake of illustration, we apply this formalism to find the functional dependence of the expectation value of the momentum of a Bose-Einstein condensate, described by the Gross-Pitaewskii equation, when it is exposed to a sawtooth potential whose amplitude is periodically modulated in time. We show that, by using this formalism, a small set of measurements is enough to obtain the functional form for a wide range of parameters. This can be very helpful when characterizing experimentally the response of systems for which performing measurements is costly or difficult.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا