ﻻ يوجد ملخص باللغة العربية
We review here {it Maximum Caliber} (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of {it Maximum Entropy} (Max Ent) is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of Non-Equilibrium Statistical Physics -- such as the Green-Kubo fluctuation-dissipation relations, Onsagers reciprocal relations, and Prigogines Minimum Entropy Production -- are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give recent examples of MaxCal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle, and some limitations.
There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of Maximum Entropy, predicts dynamical distribution
We present a principled approach for estimating the matrix of microscopic rates among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a vari
A variation principle for mass transport in solids is derived that recasts transport coefficients as minima of local thermodynamic average quantities. The result is independent of diffusion mechanism, and applies to amorphous and crystalline systems.
We study the nonextensive thermodynamics for open systems. On the basis of the maximum entropy principle, the dual power-law q-distribution functions are re-deduced by using the dual particle number definitions and assuming that the chemical potentia
Dynamical systems often contain oscillatory forces or depend on periodic potentials. Time or space periodicity is reflected in the properties of these systems through a dependence on the parameters of their periodic terms. In this paper we provide a