ﻻ يوجد ملخص باللغة العربية
We study the nonextensive thermodynamics for open systems. On the basis of the maximum entropy principle, the dual power-law q-distribution functions are re-deduced by using the dual particle number definitions and assuming that the chemical potential is constant in the two sets of parallel formalisms, where the fundamental thermodynamic equations with dual interpretations of thermodynamic quantities are derived for the open systems. By introducing parallel structures of Legendre transformations, other thermodynamic equations with dual interpretations of quantities are also deduced in the open systems, and then several dual thermodynamic relations are inferred. One can easily find that there are correlations between the dual relations, from which an equivalent rule is found that the Tsallis factor is invariable in calculations of partial derivative with constant volume or constant entropy. Using this rule, more correlations can be found. And the statistical expressions of the Lagrange internal energy and pressure are easily obtained.
The selection of an equilibrium state by maximising the entropy of a system, subject to certain constraints, is often powerfully motivated as an exercise in logical inference, a procedure where conclusions are reached on the basis of incomplete infor
There are three ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for s
We apply the Principle of Maximum Entropy to the study of a general class of deterministic fractal sets. The scaling laws peculiar to these objects are accounted for by means of a constraint concerning the average content of information in those patt
A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises a set of superstatistical
The nonextensive statistical ensembles are revisited for the complex systems with long-range interactions and long-range correlations. An approximation, the value of nonextensive parameter (1-q) is assumed to be very tiny, is adopted for the limit of