ﻻ يوجد ملخص باللغة العربية
A variation principle for mass transport in solids is derived that recasts transport coefficients as minima of local thermodynamic average quantities. The result is independent of diffusion mechanism, and applies to amorphous and crystalline systems. This unifies different computational approaches for diffusion, and provides a framework for the creation of new approximation methods with error estimation. It gives a different physical interpretation of the Green function. Finally, the variational principle quantifies the accuracy of competing approaches for a nontrivial diffusion problem.
We review here {it Maximum Caliber} (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of {it Maximum Entropy} (Max Ent) is to e
There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of Maximum Entropy, predicts dynamical distribution
A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of
We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the
Transport coefficients associated with the mass flux of impurities immersed in a moderately dense granular gas of hard disks or spheres described by the inelastic Enskog equation are obtained by means of the Chapman-Enskog expansion. The transport co