ﻻ يوجد ملخص باللغة العربية
There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of Maximum Entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results -including the Green-Kubo relations, Onsagers reciprocal relations of coupled flows, and Prigogines principle of minimum entropy production -in a way that is particularly simple. More importantly, because Max Cal does not require any notion of local equilibrium, or any notion of entropy dissipation, or even any restriction to material physics, it is more general than many traditional approaches. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Max Cal is not limited to materials and fluids; it also applies, for example, to flows and trafficking on networks more broadly.
We review here {it Maximum Caliber} (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of {it Maximum Entropy} (Max Ent) is to e
The local equilibrium approach previously developed by the Authors [J. Mabillard and P. Gaspard, J. Stat. Mech. (2020) 103203] for matter with broken symmetries is applied to crystalline solids. The macroscopic hydrodynamics of crystals and their loc
We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (L
Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an id
For a given thermodynamic system, and a given choice of coarse-grained state variables, the knowledge of a force-flux constitutive law is the basis for any nonequilibrium modeling. In the first paper of this series we established how, by a generaliza