ترغب بنشر مسار تعليمي؟ اضغط هنا

Radical analysis network for zero-shot learning in printed Chinese character recognition

100   0   0.0 ( 0 )
 نشر من قبل Jianshu Zhang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Chinese characters have a huge set of character categories, more than 20,000 and the number is still increasing as more and more novel characters continue being created. However, the enormous characters can be decomposed into a compact set of about 500 fundamental and structural radicals. This paper introduces a novel radical analysis network (RAN) to recognize printed Chinese characters by identifying radicals and analyzing two-dimensional spatial structures among them. The proposed RAN first extracts visual features from input by employing convolutional neural networks as an encoder. Then a decoder based on recurrent neural networks is employed, aiming at generating captions of Chinese characters by detecting radicals and two-dimensional structures through a spatial attention mechanism. The manner of treating a Chinese character as a composition of radicals rather than a single character class largely reduces the size of vocabulary and enables RAN to possess the ability of recognizing unseen Chinese character classes, namely zero-shot learning.



قيم البحث

اقرأ أيضاً

Recently, great progress has been made for online handwritten Chinese character recognition due to the emergence of deep learning techniques. However, previous research mostly treated each Chinese character as one class without explicitly considering its inherent structure, namely the radical components with complicated geometry. In this study, we propose a novel trajectory-based radical analysis network (TRAN) to firstly identify radicals and analyze two-dimensional structures among radicals simultaneously, then recognize Chinese characters by generating captions of them based on the analysis of their internal radicals. The proposed TRAN employs recurrent neural networks (RNNs) as both an encoder and a decoder. The RNN encoder makes full use of online information by directly transforming handwriting trajectory into high-level features. The RNN decoder aims at generating the caption by detecting radicals and spatial structures through an attention model. The manner of treating a Chinese character as a two-dimensional composition of radicals can reduce the size of vocabulary and enable TRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen. Evaluated on CASIA-OLHWDB database, the proposed approach significantly outperforms the state-of-the-art whole-character modeling approach with a relative character error rate (CER) reduction of 10%. Meanwhile, for the case of recognition of 500 unseen Chinese characters, TRAN can achieve a character accuracy of about 60% while the traditional whole-character method has no capability to handle them.
The recognition of Chinese characters has always been a challenging task due to their huge variety and complex structures. The latest research proves that such an enormous character set can be decomposed into a collection of about 500 fundamental Chi nese radicals, and based on which this problem can be solved effectively. While with the constant advent of novel Chinese characters, the number of basic radicals is also expanding. The current methods that entirely rely on existing radicals are not flexible for identifying these novel characters and fail to recognize these Chinese characters without learning all of their radicals in the training stage. To this end, this paper proposes a novel Hippocampus-heuristic Character Recognition Network (HCRN), which references the way of hippocampus thinking, and can recognize unseen Chinese characters (namely zero-shot learning) only by training part of radicals. More specifically, the network architecture of HCRN is a new pseudo-siamese network designed by us, which can learn features from pairs of input training character samples and use them to predict unseen Chinese characters. The experimental results show that HCRN is robust and effective. It can accurately predict about 16,330 unseen testing Chinese characters relied on only 500 trained Chinese characters. The recognition accuracy of HCRN outperforms the state-of-the-art Chinese radical recognition approach by 15% (from 85.1% to 99.9%) for recognizing unseen Chinese characters.
Chinese character recognition has attracted much research interest due to its wide applications. Although it has been studied for many years, some issues in this field have not been completely resolved yet, e.g. the zero-shot problem. Previous charac ter-based and radical-based methods have not fundamentally addressed the zero-shot problem since some characters or radicals in test sets may not appear in training sets under a data-hungry condition. Inspired by the fact that humans can generalize to know how to write characters unseen before if they have learned stroke orders of some characters, we propose a stroke-based method by decomposing each character into a sequence of strokes, which are the most basic units of Chinese characters. However, we observe that there is a one-to-many relationship between stroke sequences and Chinese characters. To tackle this challenge, we employ a matching-based strategy to transform the predicted stroke sequence to a specific character. We evaluate the proposed method on handwritten characters, printed artistic characters, and scene characters. The experimental results validate that the proposed method outperforms existing methods on both character zero-shot and radical zero-shot tasks. Moreover, the proposed method can be easily generalized to other languages whose characters can be decomposed into strokes.
This paper proposes a novel model for recognizing images with composite attribute-object concepts, notably for composite concepts that are unseen during model training. We aim to explore the three key properties required by the task --- relation-awar e, consistent, and decoupled --- to learn rich and robust features for primitive concepts that compose attribute-object pairs. To this end, we propose the Blocked Message Passing Network (BMP-Net). The model consists of two modules. The concept module generates semantically meaningful features for primitive concepts, whereas the visual module extracts visual features for attributes and objects from input images. A message passing mechanism is used in the concept module to capture the relations between primitive concepts. Furthermore, to prevent the model from being biased towards seen composite concepts and reduce the entanglement between attributes and objects, we propose a blocking mechanism that equalizes the information available to the model for both seen and unseen concepts. Extensive experiments and ablation studies on two benchmarks show the efficacy of the proposed model.
Recently, great success has been achieved in offline handwritten Chinese character recognition by using deep learning methods. Chinese characters are mainly logographic and consist of basic radicals, however, previous research mostly treated each Chi nese character as a whole without explicitly considering its internal two-dimensional structure and radicals. In this study, we propose a novel radical analysis network with densely connected architecture (DenseRAN) to analyze Chinese character radicals and its two-dimensional structures simultaneously. DenseRAN first encodes input image to high-level visual features by employing DenseNet as an encoder. Then a decoder based on recurrent neural networks is employed, aiming at generating captions of Chinese characters by detecting radicals and two-dimensional structures through attention mechanism. The manner of treating a Chinese character as a composition of two-dimensional structures and radicals can reduce the size of vocabulary and enable DenseRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen in training set. Evaluated on ICDAR-2013 competition database, the proposed approach significantly outperforms whole-character modeling approach with a relative character error rate (CER) reduction of 18.54%. Meanwhile, for the case of recognizing 3277 unseen Chinese characters in CASIA-HWDB1.2 database, DenseRAN can achieve a character accuracy of about 41% while the traditional whole-character method has no capability to handle them.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا