ﻻ يوجد ملخص باللغة العربية
The recognition of Chinese characters has always been a challenging task due to their huge variety and complex structures. The latest research proves that such an enormous character set can be decomposed into a collection of about 500 fundamental Chinese radicals, and based on which this problem can be solved effectively. While with the constant advent of novel Chinese characters, the number of basic radicals is also expanding. The current methods that entirely rely on existing radicals are not flexible for identifying these novel characters and fail to recognize these Chinese characters without learning all of their radicals in the training stage. To this end, this paper proposes a novel Hippocampus-heuristic Character Recognition Network (HCRN), which references the way of hippocampus thinking, and can recognize unseen Chinese characters (namely zero-shot learning) only by training part of radicals. More specifically, the network architecture of HCRN is a new pseudo-siamese network designed by us, which can learn features from pairs of input training character samples and use them to predict unseen Chinese characters. The experimental results show that HCRN is robust and effective. It can accurately predict about 16,330 unseen testing Chinese characters relied on only 500 trained Chinese characters. The recognition accuracy of HCRN outperforms the state-of-the-art Chinese radical recognition approach by 15% (from 85.1% to 99.9%) for recognizing unseen Chinese characters.
Chinese characters have a huge set of character categories, more than 20,000 and the number is still increasing as more and more novel characters continue being created. However, the enormous characters can be decomposed into a compact set of about 5
Chinese character recognition has attracted much research interest due to its wide applications. Although it has been studied for many years, some issues in this field have not been completely resolved yet, e.g. the zero-shot problem. Previous charac
Zero-shot learning (ZSL) aims to recognize unseen object classes without any training samples, which can be regarded as a form of transfer learning from seen classes to unseen ones. This is made possible by learning a projection between a feature spa
In zero-shot learning (ZSL), conditional generators have been widely used to generate additional training features. These features can then be used to train the classifiers for testing data. However, some testing data are considered hard as they lie
From the beginning of zero-shot learning research, visual attributes have been shown to play an important role. In order to better transfer attribute-based knowledge from known to unknown classes, we argue that an image representation with integrated