ﻻ يوجد ملخص باللغة العربية
Chinese character recognition has attracted much research interest due to its wide applications. Although it has been studied for many years, some issues in this field have not been completely resolved yet, e.g. the zero-shot problem. Previous character-based and radical-based methods have not fundamentally addressed the zero-shot problem since some characters or radicals in test sets may not appear in training sets under a data-hungry condition. Inspired by the fact that humans can generalize to know how to write characters unseen before if they have learned stroke orders of some characters, we propose a stroke-based method by decomposing each character into a sequence of strokes, which are the most basic units of Chinese characters. However, we observe that there is a one-to-many relationship between stroke sequences and Chinese characters. To tackle this challenge, we employ a matching-based strategy to transform the predicted stroke sequence to a specific character. We evaluate the proposed method on handwritten characters, printed artistic characters, and scene characters. The experimental results validate that the proposed method outperforms existing methods on both character zero-shot and radical zero-shot tasks. Moreover, the proposed method can be easily generalized to other languages whose characters can be decomposed into strokes.
Chinese characters have a huge set of character categories, more than 20,000 and the number is still increasing as more and more novel characters continue being created. However, the enormous characters can be decomposed into a compact set of about 5
Single online handwritten Chinese character recognition~(single OLHCCR) has achieved prominent performance. However, in real application scenarios, users always write multiple Chinese characters to form one complete sentence and the contextual inform
The recognition of Chinese characters has always been a challenging task due to their huge variety and complex structures. The latest research proves that such an enormous character set can be decomposed into a collection of about 500 fundamental Chi
Recently, great success has been achieved in offline handwritten Chinese character recognition by using deep learning methods. Chinese characters are mainly logographic and consist of basic radicals, however, previous research mostly treated each Chi
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that