ﻻ يوجد ملخص باللغة العربية
Recently, great progress has been made for online handwritten Chinese character recognition due to the emergence of deep learning techniques. However, previous research mostly treated each Chinese character as one class without explicitly considering its inherent structure, namely the radical components with complicated geometry. In this study, we propose a novel trajectory-based radical analysis network (TRAN) to firstly identify radicals and analyze two-dimensional structures among radicals simultaneously, then recognize Chinese characters by generating captions of them based on the analysis of their internal radicals. The proposed TRAN employs recurrent neural networks (RNNs) as both an encoder and a decoder. The RNN encoder makes full use of online information by directly transforming handwriting trajectory into high-level features. The RNN decoder aims at generating the caption by detecting radicals and spatial structures through an attention model. The manner of treating a Chinese character as a two-dimensional composition of radicals can reduce the size of vocabulary and enable TRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen. Evaluated on CASIA-OLHWDB database, the proposed approach significantly outperforms the state-of-the-art whole-character modeling approach with a relative character error rate (CER) reduction of 10%. Meanwhile, for the case of recognition of 500 unseen Chinese characters, TRAN can achieve a character accuracy of about 60% while the traditional whole-character method has no capability to handle them.
Single online handwritten Chinese character recognition~(single OLHCCR) has achieved prominent performance. However, in real application scenarios, users always write multiple Chinese characters to form one complete sentence and the contextual inform
Chinese characters have a huge set of character categories, more than 20,000 and the number is still increasing as more and more novel characters continue being created. However, the enormous characters can be decomposed into a compact set of about 5
Recently, great success has been achieved in offline handwritten Chinese character recognition by using deep learning methods. Chinese characters are mainly logographic and consist of basic radicals, however, previous research mostly treated each Chi
Handwritten character recognition (HCR) is a challenging learning problem in pattern recognition, mainly due to similarity in structure of characters, different handwriting styles, noisy datasets and a large variety of languages and scripts. HCR prob
The recognition of cursive script is regarded as a subtle task in optical character recognition due to its varied representation. Every cursive script has different nature and associated challenges. As Urdu is one of cursive language that is derived