ﻻ يوجد ملخص باللغة العربية
We answer a question of K. Mulmuley: In [Efremenko-Landsberg-Schenck-Weyman] it was shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this no-go result could be extended to a model without padding. We prove this is indeed the case using the iterated matrix multiplication polynomial. We also provide several examples of polynomials with maximal space of partial derivatives, including the complete symmetric polynomials. We apply Koszul flattenings to these polynomials to have the first explicit sequence of polynomials with symmetric border rank lower bounds higher than the bounds attainable via partial derivatives.
The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complex
We extend some classical results - such as Quillens Theorem A, the Grothendieck construction, Thomasons Theorem and the characterisation of homotopically cofinal functors - from the homotopy theory of small categories to polynomial monads and their a
Rank-2 Drinfeld modules are a function-field analogue of elliptic curves, and the purpose of this paper is to investigate similarities and differences between rank-2 Drinfeld modules and elliptic curves in terms of supersingularity. Specifically, we
In the spirit of recent work of Harada-Kaveh and Nishinou-Nohara-Ueda, we study the symplectic geometry of Popovs horospherical degenerations of complex algebraic varieties with the action of a complex linearly reductive group. We formulate an intrin
We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is an