ﻻ يوجد ملخص باللغة العربية
The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the dimension of its space of partial derivatives? We show that this problem is #P-hard and we ask whether it belongs to #P. We analyze the trace method, recently used in combinatorics and in algebraic complexity to lower bound the rank of certain matrices. We show that this method provides a polynomial-time computable lower bound on the dimension of the span of partial derivatives, and from this method we derive closed-form lower bounds. We leave as an open problem the existence of an approximation algorithm with reasonable performance guarantees.A slightly shorter version of this paper was presented at STACS17. In this new version we have corrected a typo in Section 4.1, and added a reference to Shitovs work on tensor rank.
We prove two new results about the randomized query complexity of composed functions. First, we show that the randomized composition conjecture is false: there are families of partial Boolean functions $f$ and $g$ such that $R(fcirc g)ll R(f) R(g)$.
We answer a question of K. Mulmuley: In [Efremenko-Landsberg-Schenck-Weyman] it was shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this no-go result could b
We provide two sufficient and necessary conditions to characterize any $n$-bit partial Boolean function with exact quantum 1-query complexity. Using the first characterization, we present all $n$-bit partial Boolean functions that depend on $n$ bits
Detecting and eliminating logic hazards in Boolean circuits is a fundamental problem in logic circuit design. We show that there is no $O(3^{(1-epsilon)n} text{poly}(s))$ time algorithm, for any $epsilon > 0$, that detects logic hazards in Boolean ci
Let $fsubseteq{0,1}^ntimesXi$ be a relation and $g:{0,1}^mto{0,1,*}$ be a promise function. This work investigates the randomised query complexity of the relation $fcirc g^nsubseteq{0,1}^{mcdot n}timesXi$, which can be viewed as one of the most gener