ﻻ يوجد ملخص باللغة العربية
We extend some classical results - such as Quillens Theorem A, the Grothendieck construction, Thomasons Theorem and the characterisation of homotopically cofinal functors - from the homotopy theory of small categories to polynomial monads and their algebras. As an application we give a categorical proof of the Dwyer-Hess and Turchin results concerning the explicit double delooping of spaces of long knots.
From a map of operads $eta : Orightarrow O$, we introduce a cofibrant replacement of the operad $O$ in the category of bimodules over itself such that the corresponding model of the derived mapping space of bimodules $Bimod_{O}^{h}(O;O)$ is an algebr
It is known that the bimodule derived mapping spaces between two operads have a delooping in terms of the operadic mapping space. We show a relative version of that statement. The result has applications to the spaces of disc embeddings fixed near the boundary and framed disc embeddings.
We denote the $n$-th projective space of a topological monoid $G$ by $B_nG$ and the classifying space by $BG$. Let $G$ be a well-pointed topological monoid of the homotopy type of a CW complex and $G$ a well-pointed grouplike topological monoid. We p
Hepworth, Willerton, Leinster and Shulman introduced the magnitude homology groups for enriched categories, in particular, for metric spaces. The purpose of this paper is to describe the magnitude homology group of a metric space in terms of order co
We compare the homological support and tensor triangular support for `big objects in a rigidly-compactly generated tensor triangulated category. We prove that the comparison map from the homological spectrum to the tensor triangular spectrum is a bij