ترغب بنشر مسار تعليمي؟ اضغط هنا

Explicit formula of a supersingular polynomial for rank-2 Drinfeld modules and applications

77   0   0.0 ( 0 )
 نشر من قبل Takehiro Hasegawa
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Takehiro Hasegawa




اسأل ChatGPT حول البحث

Rank-2 Drinfeld modules are a function-field analogue of elliptic curves, and the purpose of this paper is to investigate similarities and differences between rank-2 Drinfeld modules and elliptic curves in terms of supersingularity. Specifically, we provide an explicit formula of a supersingular polynomial for rank-2 Drinfeld modules and prove several basic properties. As an application, we give a numerical example of an asymptotically optimal tower of Drinfeld modular curves.



قيم البحث

اقرأ أيضاً

We fix data $(K/F, E)$ consisting of a Galois extension $K/F$ of characteristic $p$ global fields with arbitrary abelian Galois group $G$ and a Drinfeld module $E$ defined over a certain Dedekind subring of $F$. For this data, we define a $G$-equivar iant $L$-function $Theta_{K/F}^E$ and prove an equivariant Tamagawa number formula for certain Euler-complet
187 - Chien-Hua Chen 2021
In this paper, we study the surjectivity of adelic Galois representation associated to Drinfeld $mathbb{F}_q[T]$-modules over $mathbb{F}_q(T)$ of rank $2$ in the cases when $q$ is even or $q=3$.
161 - Chien-Hua Chen 2021
Suppose we are given a Drinfeld Module $phi$ over $mathbb{F}_q(t)$ of rank $r$ and a prime ideal $mathfrak{l}$ of $mathbb{F}_q[T]$. In this paper, we prove that the reducibility of mod $mathfrak{l}$ Galois representation $${rm{Gal}}(mathbb{F}_q(T)^{r m{sep}}/mathbb{F}_q(T))rightarrow {rm{Aut}}(phi[mathfrak{l}])cong {rm{GL}}_r(mathbb{F}_mathfrak{l})$$ gives a bound on the degree of $mathfrak{l}$ which depends only on the rank $r$ of Drinfeld module $phi$ and the minimal degree of place $mathcal{P}$ where $phi$ has good reduction at $mathcal{P}$. Then, we apply this reducibility bound to study the Drinfeld module analogue of Serres uniformity problem.
This paper deals with properties of the algebraic variety defined as the set of zeros of a typical sequence of polynomials. We consider various types of nice varieties: set-theoretic and ideal-theoretic complete intersections, absolutely irreducible ones, and nonsingular ones. For these types, we present a nonzero obstruction polynomial of explicitly bounded degree in the coefficients of the sequence that vanishes if its variety is not of the type. Over finite fields, this yields bounds on the number of such sequences. We also show that most sequences (of at least two polynomials) define a degenerate variety, namely an absolutely irreducible nonsingular hypersurface in some linear projective subspace.
We provide explicit bounds on the difference of heights of isogenous Drinfeld modules. We derive a finiteness result in isogeny classes. In the rank 2 case, we also obtain an explicit upper bound on the size of the coefficients of modular polynomials attached to Drinfeld modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا