ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an algebraic natural proofs barrier via polynomial identity testing

79   0   0.0 ( 0 )
 نشر من قبل Joshua Grochow
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich natural proofs barrier in Boolean circuit complexity, in that we rule out a large class of lower bound techniques under a derandomization assumption. We also discuss connections between this algebraic natural proofs barrier, geometric complexity theory, and (algebraic) proof complexity.

قيم البحث

اقرأ أيضاً

We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not ha ve polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity.
Let $C$ be a depth-3 arithmetic circuit of size at most $s$, computing a polynomial $ f in mathbb{F}[x_1,ldots, x_n] $ (where $mathbb{F}$ = $mathbb{Q}$ or $mathbb{C}$) and the fan-in of the product gates of $C$ is bounded by $d$. We give a determinis tic polynomial identity testing algorithm to check whether $fequiv 0$ or not in time $ 2^d text{ poly}(n,s) $.
In this paper we study arithmetic computations in the nonassociative, and noncommutative free polynomial ring $mathbb{F}{x_1,x_2,ldots,x_n}$. Prior to this work, nonassociative arithmetic computation was considered by Hrubes, Wigderson, and Yehudayof f [HWY10], and they showed lower bounds and proved completeness results. We consider Polynomial Identity Testing (PIT) and polynomial factorization over $mathbb{F}{x_1,x_2,ldots,x_n}$ and show the following results. (1) Given an arithmetic circuit $C$ of size $s$ computing a polynomial $fin mathbb{F} {x_1,x_2,ldots,x_n}$ of degree $d$, we give a deterministic $poly(n,s,d)$ algorithm to decide if $f$ is identically zero polynomial or not. Our result is obtained by a suitable adaptation of the PIT algorithm of Raz-Shpilka [RS05] for noncommutative ABPs. (2) Given an arithmetic circuit $C$ of size $s$ computing a polynomial $fin mathbb{F} {x_1,x_2,ldots,x_n}$ of degree $d$, we give an efficient deterministic algorithm to compute circuits for the irreducible factors of $f$ in time $poly(n,s,d)$ when $mathbb{F}=mathbb{Q}$. Over finite fields of characteristic $p$, our algorithm runs in time $poly(n,s,d,p)$.
For every constant c > 0, we show that there is a family {P_{N, c}} of polynomials whose degree and algebraic circuit complexity are polynomially bounded in the number of variables, that satisfies the following properties: * For every family {f_n} of polynomials in VP, where f_n is an n variate polynomial of degree at most n^c with bounded integer coefficients and for N = binom{n^c + n}{n}, P_{N,c} emph{vanishes} on the coefficient vector of f_n. * There exists a family {h_n} of polynomials where h_n is an n variate polynomial of degree at most n^c with bounded integer coefficients such that for N = binom{n^c + n}{n}, P_{N,c} emph{does not vanish} on the coefficient vector of h_n. In other words, there are efficiently computable equations for polynomials in VP that have small integer coefficients. In fact, we also prove an analogous statement for the seemingly larger class VNP. Thus, in this setting of polynomials with small integer coefficients, this provides evidence emph{against} a natural proof like barrier for proving algebraic circuit lower bounds, a framework for which was proposed in the works of Forbes, Shpilka and Volk (2018), and Grochow, Kumar, Saks and Saraf (2017). Our proofs are elementary and rely on the existence of (non-explicit) hitting sets for VP (and VNP) to show that there are efficiently constructible, low degree equations for these classes. Our proofs also extend to finite fields of small size.
67 - Ketan D. Mulmuley 2009
Geometric complexity theory (GCT) is an approach to the P vs. NP and related problems. This article gives its complexity theoretic overview without assuming any background in algebraic geometry or representation theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا