ﻻ يوجد ملخص باللغة العربية
Using aluminum-nitride photonic-chip waveguides, we generate optical-frequency-comb supercontinuum spanning from 500 nm to 4000 nm with a 0.8 nJ seed pulse, and show that the spectrum can be tailored by changing the waveguide geometry. Since aluminum nitride exhibits both quadratic and cubic nonlinearities, the spectra feature simultaneous contributions from numerous nonlinear mechanisms: supercontinuum generation, difference-frequency generation, second-harmonic generation, and third-harmonic generation. As one application of integrating multiple nonlinear processes, we measure and stabilize the carrier-envelope-offset frequency of a laser comb by direct photodetection of the output light. Additionally, we generate ~0.3 mW in the 3000 nm to 4000 nm region, which is potentially useful for molecular spectroscopy. The combination of broadband light generation from the visible through the mid-infrared, combined with simplified self-referencing, provides a path towards robust comb systems for spectroscopy and metrology in the field.
Mid-infrared laser frequency combs are compelling sources for precise and sensitive metrology with applications in molecular spectroscopy and spectro-imaging. The infrared atmospheric window between 3-5.5 $mu$m in particular provides vital informatio
Thin-film lithium niobate (TFLN) is superior for integrated nanophotonics due to its outstanding properties in nearly all aspects: strong second-order nonlinearity, fast and efficient electro-optic effects, wide transparency window, and little two ph
On-chip ultraviolet to infrared (UV-IR) spectrum frequency metrology is of crucial importance as a characterization tool for fundamental studies on quantum physics, chemistry, and biology. Due to the strong material dispersion, traditional techniques
A broadband visible blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via
The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to mo