ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Frequency Doubling with Active Stabilization on Chip

74   0   0.0 ( 0 )
 نشر من قبل Jiayang Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin-film lithium niobate (TFLN) is superior for integrated nanophotonics due to its outstanding properties in nearly all aspects: strong second-order nonlinearity, fast and efficient electro-optic effects, wide transparency window, and little two photon absorption and free carrier scattering. Together, they permit highly integrated nanophotonic circuits capable of complex photonic processing by incorporating disparate elements on the same chip. Yet, there has to be a demonstration that synergizes those superior properties for system advantage. Here we demonstrate such a chip that capitalizes on TFLNs favorable ferroelectricity, high second-order nonlinearity, and strong electro-optic effects. It consists of a monolithic circuit integrating a Z-cut, quasi-phase matched microring with high quality factor and a phase modulator used in active feedback control. By Pound-Drever-Hall locking, it realizes stable frequency doubling at about 50% conversion with only milliwatt pump, marking the highest by far among all nanophotonic platforms with milliwatt pumping. Our demonstration addresses a long-outstanding challenge facing cavity-based optical processing, including frequency conversion, frequency comb generation, and all-optical switching, whose stable performance is hindered by photorefractive or thermal effects. Our results further establish TFLN as an excellent material capable of optical multitasking, as desirable to build multi-functional chip devices.



قيم البحث

اقرأ أيضاً

Using aluminum-nitride photonic-chip waveguides, we generate optical-frequency-comb supercontinuum spanning from 500 nm to 4000 nm with a 0.8 nJ seed pulse, and show that the spectrum can be tailored by changing the waveguide geometry. Since aluminum nitride exhibits both quadratic and cubic nonlinearities, the spectra feature simultaneous contributions from numerous nonlinear mechanisms: supercontinuum generation, difference-frequency generation, second-harmonic generation, and third-harmonic generation. As one application of integrating multiple nonlinear processes, we measure and stabilize the carrier-envelope-offset frequency of a laser comb by direct photodetection of the output light. Additionally, we generate ~0.3 mW in the 3000 nm to 4000 nm region, which is potentially useful for molecular spectroscopy. The combination of broadband light generation from the visible through the mid-infrared, combined with simplified self-referencing, provides a path towards robust comb systems for spectroscopy and metrology in the field.
We present the first demonstration of all-optical squeezing in an on-chip monolithically integrated CMOS-compatible platform. Our device consists of a low loss silicon nitride microring optical parametric oscillator (OPO) with a gigahertz cavity line width. We measure 1.7 dB (5 dB corrected for losses) of sub-shot noise quantum correlations between bright twin beams generated in the microring four-wave-mixing OPO pumped above threshold. This experiment demonstrates a compact, robust, and scalable platform for quantum optics and quantum information experiments on-chip.
Achieving efficient terahertz (THz) generation using compact turn-key sources operating at room temperature and modest power levels represents one of the critical challeges that must be overcome to realize truly practical applications based on THz. U p to now, the most efficient approaches to THz generation at room temperature -- relying mainly on optical rectification schemes -- require intricate phase-matching set-ups and powerful lasers. Here we show how the unique light-confining properties of triply-resonant photonic resonators can be tailored to enable dramatic enhancements of the conversion efficiency of THz generation via nonlinear frequency down-conversion processes. We predict that this approach can be used to reduce up to three orders of magnitude the pump powers required to reach quantum-limited conversion efficiency of THz generation in nonlinear optical material systems. Furthermore, we propose a realistic design readily accesible experimentally, both for fabrication and demonstration of optimal THz conversion efficiency at sub-W power levels.
Nonlinear frequency conversion is ubiquitous in laser engineering and quantum information technology. A long-standing goal in photonics is to integrate on-chip semiconductor laser sources with nonlinear optical components. Engineering waveguide laser s with spectra that phase-match to nonlinear processes on the same device is a formidable challenge. Here, we demonstrate difference-frequency generation in an AlGaAs Bragg reflection waveguide which incorporates the gain medium for the pump laser in its core. We include quantum dot layers in the AlGaAs waveguide that generate electrically driven laser light at ~790 nm, and engineer the structure to facilitate nonlinear processes at this wavelength. We perform difference-frequency generation between 1540 nm and 1630 nm using the on-chip laser, which is enabled by the broad modal phase-matching of the AlGaAs waveguide, and measure normalized conversion efficiencies up to $(0.64pm0.21)$ %/W/cm$^2$. Our work demonstrates a pathway towards devices that utilize on-chip active elements and strong optical nonlinearities to enable highly integrated photonic systems-on-chip.
The conversion and interaction between quantum signals at a single-photon level are essential for scalable quantum photonic information technology. Using a fully-optimized, periodically-poled lithium niobate microring, we demonstrate ultra-efficient sum-frequency generation on chip. The external quantum efficiency reaches $(65pm3)%$ with only $(104pm4)$ $mu$W pump power, improving the state-of-the-art by over one order of magnitude. At the peak conversion, $3times10^{-5}$ noise photon is created during the cavity lifetime, which meets the requirement of quantum applications using single-photon pulses. Using pump and signal in single-photon coherent states, we directly measure the conversion probability produced by a single pump photon to be $10^{-5}$ -- breaking the record by 100 times -- and the photon-photon coupling strength to be 9.1 MHz. Our results mark a new milestone toward quantum nonlinear optics at the ultimate single photon limit, creating new background in highly integrated photonics and quantum optical computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا