ترغب بنشر مسار تعليمي؟ اضغط هنا

Visible blue-to-red 10 GHz frequency comb via on-chip triple-sum frequency generation

386   0   0.0 ( 0 )
 نشر من قبل Ewelina Obrzud
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A broadband visible blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via electro-optic modulation of a 1560 nm continuous-wave laser, are coupled to a silicon nitride waveguide giving rise to a broadband near-infrared supercontinuum. Modal phase matching inside the waveguide allows direct triple-sum frequency transfer of the near-infrared supercontinuum into the visible wavelength range covering more than 250 THz from below 400 nm to above 600 nm wavelength. This scheme directly links the mature optical telecommunication band technology to the visible wavelength band and can find application in astronomical spectrograph calibration as well as referencing of continuous-wave lasers.

قيم البحث

اقرأ أيضاً

Beginning with a continuous wave laser at 1064 nm, we generate a 30 GHz electro-optic frequency comb which contains 100 lines spanning 3 THz. The initial comb is subsequently amplified, spectrally broadened in normal dispersion photonic crystal fiber , and then temporally compressed to provide 74 fs pulses with average power of up to 2.6 W. When launched into a second photonic crystal fiber with anomalous dispersion, a supercontinuum spanning 800-1350 nm is generated. Second harmonic generation allows for extension of the 30 GHz comb into the visible, yielding greater than 300 THz of total spectral bandwidth. Such a broad bandwidth, high repetition rate comb is a compelling source for astronomical spectrograph calibration.
93 - S.-W. Huang , J. Yang , M. Yu 2015
Optical frequency combs, coherent light sources that connect optical frequencies with microwave oscillations, have become the enabling tool for precision spectroscopy, optical clockwork and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but four-wave-mixing in high-Q resonators have emerged as alternative platforms. Here we report the generation and full stabilization of CMOS-compatible optical frequency combs. The spiral microcombs two degrees-of-freedom, one of the comb line and the native 18 GHz comb spacing, are first simultaneously phase-locked to known optical and microwave references. Second, with pump power control, active comb spacing stabilization improves the long-term stability by six orders-of-magnitude, reaching an instrument-limited 3.6 mHz/sqrt(t) residual instability. Third, referencing thirty-three of the nitride frequency comb lines against a fiber comb, we demonstrate the comb tooth-to-tooth frequency relative inaccuracy down to 53 mHz and 2.8x10-16, heralding unprecedented chip-scale applications in precision spectroscopy, coherent communications, and astronomical spectrography.
Simultaneous Kerr comb formation and second-harmonic generation with on-chip microresonators can greatly facilitate comb self-referencing for optical clocks and frequency metrology. Moreover, the presence of both second- and third-order nonlinearitie s results in complex cavity dynamics that is of high scientific interest but is still far from well understood. Here, we demonstrate that the interaction between the fundamental and the second-harmonic waves can provide an entirely new way of phase-matching for four-wave mixing in optical microresonators, enabling the generation of optical frequency combs in the normal dispersion regime, under conditions where comb creation is ordinarily prohibited. We derive new coupled time-domain mean-field equations and obtain simulation results showing good qualitative agreement with our experimental observations. Our findings provide a novel way of overcoming the dispersion limit for simultaneous Kerr comb formation and second-harmonic generation, which might prove especially important in the near-visible to visible range where several atomic transitions commonly used for stabilization of optical clocks are located and where the large normal material dispersion is likely to dominate.
117 - Hanzhong Wu , Jun Ke , Panpan Wang 2021
In this work, we describe an updated version of single arm locking, and the noise amplification due to the nulls can be flexibly restricted with the help of optical frequency comb. We show that, the laser phase noise can be divided by a specific fact or with optical frequency comb as the bridge. The analytical results indicate that, the peaks in the science band have been greatly reduced. The performance of the noise suppression shows that the total noise after arm locking can well satisfy the requirement of time delay interferometry, even with the free-running laser source. We also estimate the frequency pulling characteristics of the updated single arm locking, and the results suggest that the pulling rate can be tolerated, without the risk of mode hopping. Arm locking will be a valuable solution for the noise reduction in the space-borne GW detectors. We demonstrate that, with the precise control of the returned laser phase noise, the noise amplification in the science band can be efficiently suppressed based on the updated single arm locking. Not only our method allows the suppression of the peaks, the high gain, low pulling rate, it can also serve for full year, without the potential risk of locking failure due to the arm length mismatch. We finally discuss the unified demonstration of the updated single arm locking, where both the local and the returned laser phase noises can be tuned to generate the expected arm-locking sensor actually. Our work could provide a powerful method for the arm locking in the future space-borne GW detectors.
We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagome-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular mo dulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way towards tunable fiber-based sources of deep- and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا