ﻻ يوجد ملخص باللغة العربية
The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to most efficiently exploit instantaneous optical nonlinearities in noble gases for spectral broadening and parametric frequency conversion. Here, we show that nonlinear compression can in fact be much more efficient when driven in molecular gases by pulses substantially longer than a few cycles, due to enhanced optical nonlinearity associated with rotational alignment. We use 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.7 cycles. As the enhanced nonlinearity is linked to rotational motion, the dynamics can be exploited for long-wavelength frequency conversion and compressing picosecond lasers.
We use dispersive Fourier transformation to measure shot-to-shot spectral instabilities in femtosecond supercontinuum generation. We study both the onset phase of supercontinuum generation with distinct dispersive wave generation, as well as a highly
We experimentally show octave-spanning supercontinuum generation in a non-stoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in
Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demo
The generation of a two-octave supercontinuum from the visible to mid-infrared (700 - 2800 nm) in a non-silica graded-index multimode fiber is reported. The fiber design is based on a nanostructured core comprised of two types of drawn lead-bismuth-g
Ultrafast supercontinuum generation in gas-filled waveguides is one enabling technology for many intriguing application ranging from attosecond metrology towards biophotonics, with the amount of spectral broadening crucially depending on the pulse di