ترغب بنشر مسار تعليمي؟ اضغط هنا

$chi^{(2)}$ mid-infrared frequency comb generation and stabilization with few-cycle pulses

119   0   0.0 ( 0 )
 نشر من قبل Alexander Lind
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid-infrared laser frequency combs are compelling sources for precise and sensitive metrology with applications in molecular spectroscopy and spectro-imaging. The infrared atmospheric window between 3-5.5 $mu$m in particular provides vital information regarding molecular composition. Using a robust, fiber-optic source of few-cycle pulses in the near-infrared, we experimentally demonstrate ultra-broad bandwidth nonlinear phenomena including harmonic and difference frequency generation in a single pass through periodically poled lithium niobate (PPLN). These $chi^{(2)}$ nonlinear optical processes result in the generation of frequency combs across the mid-infrared atmospheric window which we employ for dual-comb spectroscopy of acetone and carbonyl sulfide with resolution as high as 0.003 cm$^{-1}$. Moreover, cascaded $chi^{(2)}$ nonlinearities in the same PPLN directly provide the carrier-envelope offset frequency of the near-infrared driving pulse train in a compact geometry.



قيم البحث

اقرأ أيضاً

Optical frequency combs (OFCs) at Mid-Infrared (MIR) wavelengths are essential for applications in precise spectroscopy, gas sensing and molecular fingerprinting, because of its revolutionary precision in both wavelength and frequency domain. The mic roresonator-based OFCs make a further step towards practical applications by including such high precision in a compact and cost-effective package. However, dispersion engineering is still a challenge for the conventional chi-3 micro-ring resonators and a MIR pump laser is required. Here we develop a different platform of a chi-2 optical superlattice box resonator to generate MIR OFC by optical parametric down conversion. With near-material-limited quality factor of 2.0*10^7, broadband MIR OFC can be generated with over 250 nm span around 2060 nm, where only a common near-infrared laser is necessary as pump. The fine teeth spacing corresponds to a measurable radio frequency beat note at 1.566 GHz, and also results in a fine spectroscopy resolution. Its linewidth is measured to be 6.1 kHz, which reveals a low comb noise that agrees well with the clean temporal waveforms. With high output power of over 370 mW, such MIR OFC is capable for long distance sensing and ranging applications.
107 - U. Elu , L. Maidment , L. Vamos 2021
BGGSe is a newly developed nonlinear material that is attractive for ultrabroad frequency mixing and ultrashort pulse generation due to its comparably low dispersion and high damage threshold.In a first experiment, we show that a long crystal length of 2.6 mm yields a pulse energy of 21 pJ at 100 MHz with a spectral bandwidth covering 5.8 to 8.5 microns. The electric field of the carrier-envelope-phase stable pulse is directly measured with electro-optical sampling and reveals a pulse duration of 91 fs, which corresponds to sub-four optical cycles, thus confirming some of the prospects of the material for ultrashort pulse generation and mid-infrared spectroscopy.
We report an all-polarization-maintaining fiber optic approach to generating sub-2 cycle pulses at 2 {mu}m and a corresponding octave-spanning optical frequency comb. Our configuration leverages mature Er:fiber laser technology at 1.5 {mu}m to provid e a seed pulse for a thulium-doped fiber amplifier that outputs 330 mW average power at 100 MHz repetition rate. Following amplification, nonlinear self-compression in fiber decreases the pulse duration to 9.5 fs, or 1.4 optical cycles. Approximately 32 % of the energy sits within the pulse peak, and the polarization extinction ratio is more than 15 dB. The spectrum of the ultrashort pulse spans from 1 {mu}m to beyond 2.4 {mu}m and enables direct measurement of the carrier-envelope offset frequency using only 12 mW, or ~3.5 % of the total power. Our approach employs only commercially-available fiber components, resulting in a turnkey amplifier design that is compact, and easy to reproduce in the larger community. Moreover, the overall design and self-compression mechanism are scalable in repetition rate and power. As such, this system should be useful as a robust frequency comb source in the near-infrared or as a pump source to generate mid-infrared frequency combs.
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest attosecond (as) pulses have been produced only in the extreme ultraviolet (EUV) region o f the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we use advanced experiment and theory to demonstrate a remarkable convergence of physics: when mid-infrared lasers are used to drive the high harmonic generation process, the conditions for optimal bright soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2 mu m driving lasers. Harnessing this realization, we demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, that emerge as linearly chirped 300 as pulses with a transform limit of 35 as. Most surprisingly, we find that in contrast to as pulse generation in the EUV, long-duration, multi-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright attosecond pulses of electromagnetic radiation throughout the soft X ray region of the spectrum.
We analyze the role of the difference between the central frequencies of the spectral distributions of the vector potential and the electric field of a short laser pulse. The frequency shift arises when the electric field is determined as the derivat ive of the vector potential to ensure that both quantities vanish at the beginning and end of the pulse. We derive an analytical estimate of the frequency shift and show how it affects various light induced processes, such as excitation, ionization and high harmonic generation. Since observables depend on the frequency spectrum of the electric field, the shift should be taken into account when setting the central frequency of the vector potential to avoid potential misinterpretation of numerical results for processes induced by few-cycle pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا