ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization on Practical Photon Counting Receiver in Optical Scattering Communication

204   0   0.0 ( 0 )
 نشر من قبل Difan Zou
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the practical photon-counting receiver in optical scattering communication with finite sampling rate and electrical noise. In the receiver side, the detected signal can be characterized as a series of pulses generated by photon-multiplier (PMT) detector and held by the pulse-holding circuits, which are then sampled by the analog-to-digit convertor (ADC) with finite sampling rate and counted by a rising-edge pulse detector. However, the finite small pulse width incurs the dead time effect that may lead to sub-Poisson distribution on the recorded pulses. We analyze first-order and second-order moments on the number of recorded pulses with finite sampling rate at the receiver side under two cases where the sampling period is shorter than or equal to the pulse width as well as longer than the pulse width. Moreover, we adopt the maximum likelihood (ML) detection. In order to simplify the analysis, we adopt binomial distribution approximation on the number of recorded pulses in each slot. A tractable holding time and decision threshold selection rule is provided aiming to maximize the minimal Kullback-Leibler (KL) distance between the two distributions. The performance of proposed sub-Poisson distribution and the binomial approximation are verified by the experimental results. The equivalent arrival rate and holding time predicted by the of sub-Poisson model and the associated proposed binomial distribution on finite sampling rate and the electrical noise are validated by the simulation results. The proposed the holding time and decision threshold selection rule performs close to the optimal one.

قيم البحث

اقرأ أيضاً

In this paper, we present an analytical model for a diffusive molecular communication (MC) system with a reversible adsorption receiver in a fluid environment. The time-varying spatial distribution of the information molecules under the reversible ad sorption and desorption reaction at the surface of a bio-receiver is analytically characterized. Based on the spatial distribution, we derive the number of newly-adsorbed information molecules expected in any time duration. Importantly, we present a simulation framework for the proposed model that accounts for the diffusion and reversible reaction. Simulation results show the accuracy of our derived expressions, and demonstrate the positive effect of the adsorption rate and the negative effect of the desorption rate on the net number of newly-adsorbed information molecules expected. Moreover, our analytical results simplify to the special case of an absorbing receiver.
In optical wireless scattering communication, received signal in each symbol interval is captured by a photomultiplier tube (PMT) and then sampled through very short but finite interval sampling. The resulting samples form a signal vector for symbol detection. The upper and lower bounds on transmission rate of such a processing system are studied. It is shown that the gap between two bounds approaches zero as the thermal noise and shot noise variances approach zero. The maximum a posteriori (MAP) signal detection is performed and a low computational complexity receiver is derived under piecewise polynomial approximation. Meanwhile, the threshold based signal detection is also studied, where two threshold selection rules are proposed based on the detection error probability and the Kullback-Leibler (KL) distance. For the latter, it is shown that the KL distance is not sensitive to the threshold selection for small shot and thermal noise variances, and thus the threshold can be selected among a wide range without significant loss from the optimal KL distance. The performances of the transmission rate bounds, the signal detection, and the threshold selection approaches are evaluated by the numerical results.
In optical transport networks, signal lightpaths between two terminal nodes can be different due to current network conditions. Thus the transmission distance and accumulated dispersion in the lightpath cannot be predicted. Therefore, the adaptive co mpensation of dynamic dispersion is necessary in such networks to enable flexible routing and switching. In this paper, we present a detailed analysis on the adaptive dispersion compensation using the least-mean-square (LMS) algorithm in coherent optical communication networks. It is found that the variable-step-size LMS equalizer can achieve the same performance with a lower complexity, compared to the traditional LMS algorithm.
We study a problem of sequential frame synchronization for a frame transmitted uniformly in $A$ slots. For a discrete memoryless channel (DMC), Venkat Chandar et al showed that the frame length $N$ must scale with $A$ as $e^{N alpha(Q)} > A$ for the frame synchronization error to go to zero (asymptotically with $A$). Here, $Q$ denotes the transition probabilities of the DMC and $alpha(Q)$, defined as the synchronization threshold, characterizes the scaling needed of $N$ for asymptotic error free frame synchronization. We show that the asynchronous communication framework permits a natural tradeoff between the sync frame length $N$ and the channel (usually parameterised by the input). For an AWGN channel, we study this tradeoff between the sync frame length $N$ and the input symbol power $P$ and characterise the scaling needed of the sync frame energy $E = N P$ for optimal frame synchronisation.
Using coherent optical detection and digital signal processing, laser phase noise and equalization enhanced phase noise can be effectively mitigated using the feed-forward and feed-back carrier phase recovery approaches. In this paper, theoretical an alyses of feed-back and feed-forward carrier phase recovery methods have been carried out in the long-haul high-speed n-level phase shift keying (n-PSK) optical fiber communication systems, involving a one-tap normalized least-mean-square (LMS) algorithm, a block-wise average algorithm, and a Viterbi-Viterbi algorithm. The analytical expressions for evaluating the estimated carrier phase and for predicting the bit-error-rate (BER) performance (such as the BER floors) have been presented and discussed in the n-PSK coherent optical transmission systems by considering both the laser phase noise and the equalization enhanced phase noise. The results indicate that the Viterbi-Viterbi carrier phase recovery algorithm outperforms the one-tap normalized LMS and the block-wise average algorithms for small phase noise variance (or effective phase noise variance), while the one-tap normalized LMS algorithm shows a better performance than the other two algorithms for large phase noise variance (or effective phase noise variance). In addition, the one-tap normalized LMS algorithm is more sensitive to the level of modulation formats.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا