ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical Investigations on Carrier Phase Recovery in Dispersion-Unmanaged n-PSK Coherent Optical Communication Systems

63   0   0.0 ( 0 )
 نشر من قبل Tianhua Xu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using coherent optical detection and digital signal processing, laser phase noise and equalization enhanced phase noise can be effectively mitigated using the feed-forward and feed-back carrier phase recovery approaches. In this paper, theoretical analyses of feed-back and feed-forward carrier phase recovery methods have been carried out in the long-haul high-speed n-level phase shift keying (n-PSK) optical fiber communication systems, involving a one-tap normalized least-mean-square (LMS) algorithm, a block-wise average algorithm, and a Viterbi-Viterbi algorithm. The analytical expressions for evaluating the estimated carrier phase and for predicting the bit-error-rate (BER) performance (such as the BER floors) have been presented and discussed in the n-PSK coherent optical transmission systems by considering both the laser phase noise and the equalization enhanced phase noise. The results indicate that the Viterbi-Viterbi carrier phase recovery algorithm outperforms the one-tap normalized LMS and the block-wise average algorithms for small phase noise variance (or effective phase noise variance), while the one-tap normalized LMS algorithm shows a better performance than the other two algorithms for large phase noise variance (or effective phase noise variance). In addition, the one-tap normalized LMS algorithm is more sensitive to the level of modulation formats.

قيم البحث

اقرأ أيضاً

The study on carrier phase estimation (CPE) approaches, involving a one-tap normalized least-mean-square (NLMS) algorithm, a block-wise average algorithm, and a Viterbi-Viterbi algorithm has been carried out in the long-haul high-capacity dispersion- unmanaged coherent optical systems. The close-form expressions and analytical predictions for bit-error-rate behaviors in these CPE methods have been analyzed by considering both the laser phase noise and the equalization enhanced phase noise. It is found that the Viterbi-Viterbi algorithm outperforms the one-tap NLMS and the block-wise average algorithms for a small phase noise variance (or effective phase noise variance), while the three CPE methods converge to a similar performance for a large phase noise variance (or effective phase noise variance). In addition, the differences between the three CPE approaches become smaller for higher-level modulation formats.
The performance of long-haul coherent optical fiber transmission system is significantly affected by the equalization enhanced phase noise (EEPN), due to the interaction between the electronic dispersion compensation (EDC) and the laser phase noise. In this paper, we present a comprehensive study on different chromatic dispersion (CD) compensation and carrier phase recovery (CPR) approaches, in the n-level phase shift keying (n-PSK) and the n-level quadrature amplitude modulation (n-QAM) coherent optical transmission systems, considering the impacts of EEPN. Four CD compensation methods are considered: the time-domain equalization (TDE), the frequency-domain equalization (FDE), the least mean square (LMS) adaptive equalization are applied for EDC, and the dispersion compensating fiber (DCF) is employed for optical dispersion compensation (ODC). Meanwhile, three carrier phase recovery methods are also involved: a one-tap normalized least mean square (NLMS) algorithm, a block-wise average (BWA) algorithm, and a Viterbi-Viterbi (VV) algorithm. Numerical simulations have been carried out in a 28-Gbaud dual-polarization quadrature phase shift keying (DP-QPSK) coherent transmission system, and the results indicate that the origin of EEPN depends on the choice of chromatic dispersion compensation methods, and the effects of EEPN also behave moderately different in accordance to different carrier phase recovery scenarios.
In this paper we present a comparative study in order to specify the influence of equalization enhanced phase noise (EEPN) for pre- and post-compensation of chromatic dispersion in high capacity and high constellation systems. This is - to our knowle dge - the first detailed study in this area for pre-compensation systems. Our main results show that the local oscillator phase noise determines the EEPN influence in post-compensation implementations whereas the transmitter laser determines the EEPN in pre-compensation implementations. As a result of significance for the implementation of practical longer-range systems it is to be emphasized that the use of chromatic dispersion equalization in the optical domain - e.g. by the use of dispersion compensation fibers - eliminates the EEPN entirely. Thus, this seems a good option for such systems operating at high constellations in the future.
A polar-coded transmission (PCT) scheme with joint channel estimation and decoding is proposed for channels with unknown channel state information (CSI). The CSI is estimated via successive cancellation (SC) decoding and the constraints imposed by th e frozen bits. SC list decoding with an outer code improves performance, including resolving a phase ambiguity when using quadrature phase-shift keying (QPSK) and Gray labeling. Simulations with 5G polar codes and QPSK show gains of up to $2$~dB at a frame error rate (FER) of $10^{-4}$ over pilot-assisted transmission for various non-coherent models. Moreover, PCT performs within a few tenths of a dB to a coherent receiver with perfect CSI. For Rayleigh block-fading channels, PCT outperforms an FER upper bound based on random coding and within one dB of a lower bound.
We present a comparative study of the influence of dispersion induced phase noise for CO-OFDM systems using Tx channel multiplexing and Rx matched filter (analogue hardware based); and FFT multiplexing/IFFT demultiplexing techniques (software based). An RF carrier pilot tone is used to mitigate the phase noise influence. From the analysis, it appears that the phase noise influence for the two OFDM implementations is very similar. The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) and this, in turns, leads to a BER specification. Numerical results focus on a CO-OFDM system with 1GS/s QPSK channel modulation. Worst case BER results are evaluated and compared to the BER of a QPSK system with the same capacity as the OFDM implementation. Results are evaluated as a function of transmission distance, and for the QPSK system the influence of equalization enhanced phase noise (EEPN) is included. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. An important and novel observation is that the two types of systems have very closely the same BER as a function of transmission distance for the same capacity. For the high capacity QPSK implementation, the increase in BER is due to EEPN, whereas for the OFDM approach it is due to the dispersion caused walk-off of the RF pilot tone relative to the OFDM signal channels. For a total capacity of 400 Gb/s, the transmission distance to have the BER < 10-4 is less than 277 km.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا