ﻻ يوجد ملخص باللغة العربية
In this paper, we present an analytical model for a diffusive molecular communication (MC) system with a reversible adsorption receiver in a fluid environment. The time-varying spatial distribution of the information molecules under the reversible adsorption and desorption reaction at the surface of a bio-receiver is analytically characterized. Based on the spatial distribution, we derive the number of newly-adsorbed information molecules expected in any time duration. Importantly, we present a simulation framework for the proposed model that accounts for the diffusion and reversible reaction. Simulation results show the accuracy of our derived expressions, and demonstrate the positive effect of the adsorption rate and the negative effect of the desorption rate on the net number of newly-adsorbed information molecules expected. Moreover, our analytical results simplify to the special case of an absorbing receiver.
Molecular communication (MC) allows nanomachines to communicate and cooperate with each other in a fluid environment. The diffusion-based MC is popular but is easily constrained by the transmit distance due to the severe attenuation of molecule conce
We characterize the practical photon-counting receiver in optical scattering communication with finite sampling rate and electrical noise. In the receiver side, the detected signal can be characterized as a series of pulses generated by photon-multip
This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We f
A diffusion-based molecular communication system has two major components: the diffusion in the medium, and the ligand-reception. Information bits, encoded in the time variations of the concentration of molecules, are conveyed to the receiver front t
This paper studies the problem of secure communcation over the two-receiver discrete memoryless broadcast channel with one-sided receiver side information and with a passive eavesdropper. We proposed a coding scheme which is based upon the superposit