ﻻ يوجد ملخص باللغة العربية
In optical transport networks, signal lightpaths between two terminal nodes can be different due to current network conditions. Thus the transmission distance and accumulated dispersion in the lightpath cannot be predicted. Therefore, the adaptive compensation of dynamic dispersion is necessary in such networks to enable flexible routing and switching. In this paper, we present a detailed analysis on the adaptive dispersion compensation using the least-mean-square (LMS) algorithm in coherent optical communication networks. It is found that the variable-step-size LMS equalizer can achieve the same performance with a lower complexity, compared to the traditional LMS algorithm.
The non-orthogonal multiple access (NOMA) and millimeter-wave (mmWave) transmission enable the unmanned aerial vehicle (UAV) assisted wireless networks to provide broadband connectivity over densely packed urban areas. The presence of malicious recei
We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper
The performance of long-haul coherent optical fiber transmission system is significantly affected by the equalization enhanced phase noise (EEPN), due to the interaction between the electronic dispersion compensation (EDC) and the laser phase noise.
Physical-layer group secret-key (GSK) generation is an effective way of generating secret keys in wireless networks, wherein the nodes exploit inherent randomness in the wireless channels to generate group keys, which are subsequently applied to secu
This paper develops a tractable framework for exploiting the potential benefits of physical layer security in three-tier wireless sensor networks using stochastic geometry. In such networks, the sensing data from the remote sensors are collected by s