ﻻ يوجد ملخص باللغة العربية
In optical wireless scattering communication, received signal in each symbol interval is captured by a photomultiplier tube (PMT) and then sampled through very short but finite interval sampling. The resulting samples form a signal vector for symbol detection. The upper and lower bounds on transmission rate of such a processing system are studied. It is shown that the gap between two bounds approaches zero as the thermal noise and shot noise variances approach zero. The maximum a posteriori (MAP) signal detection is performed and a low computational complexity receiver is derived under piecewise polynomial approximation. Meanwhile, the threshold based signal detection is also studied, where two threshold selection rules are proposed based on the detection error probability and the Kullback-Leibler (KL) distance. For the latter, it is shown that the KL distance is not sensitive to the threshold selection for small shot and thermal noise variances, and thus the threshold can be selected among a wide range without significant loss from the optimal KL distance. The performances of the transmission rate bounds, the signal detection, and the threshold selection approaches are evaluated by the numerical results.
Probabilistic shaping based on constant composition distribution matching (CCDM) has received considerable attention as a way to increase the capacity of fiber optical communication systems. CCDM suffers from significant rate loss at short blocklengt
Optical communication systems, which operate at very high rates, are often limited by the sampling rate bottleneck. The optical wideband regime may exceed analog to digital converters (ADCs) front-end bandwidth. Multi-channel sampling approaches, suc
In a wireless network that conveys status updates from sources (i.e., sensors) to destinations, one of the key issues studied by existing literature is how to design an optimal source sampling strategy on account of the communication constraints whic
Intelligent reflecting surface (IRS) is a novel burgeoning concept, which possesses advantages in enhancing wireless communication and user localization, while maintaining low hardware cost and energy consumption. Herein, we establish an IRS-aided mm
This paper studies unmanned aerial vehicle (UAV) enabled wireless communication, where a rotarywing UAV is dispatched to send/collect data to/from multiple ground nodes (GNs). We aim to minimize the total UAV energy consumption, including both propul