ﻻ يوجد ملخص باللغة العربية
In order to obtain reliable accuracy estimates for automatic MOOC dropout predictors, it is important to train and test them in a manner consistent with how they will be used in practice. Yet most prior research on MOOC dropout prediction has measured test accuracy on the same course used for training the classifier, which can lead to overly optimistic accuracy estimates. In order to understand better how accuracy is affected by the training+testing regime, we compared the accuracy of a standard dropout prediction architecture (clickstream features + logistic regression) across 4 different training paradigms. Results suggest that (1) training and testing on the same course (post-hoc) can overestimate accuracy by several percentage points; (2) dropout classifiers trained on proxy labels based on students persistence are surprisingly competitive with post-hoc training (87.33% versus 90.20% AUC averaged over 8 weeks of 40 HarvardX MOOCs); and (3) classifier performance does not vary significantly with the academic discipline. Finally, we also research new dropout prediction architectures based on deep, fully-connected, feed-forward neural networks and find that (4) networks with as many as 5 hidden layers can statistically significantly increase test accuracy over that of logistic regression.
This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical
Problem-Based Learning (PBL) is a popular approach to instruction that supports students to get hands-on training by solving problems. Question Pool websites (QPs) such as LeetCode, Code Chef, and Math Playground help PBL by supplying authentic, dive
Real-world data often exhibit imbalanced distributions, where certain target values have significantly fewer observations. Existing techniques for dealing with imbalanced data focus on targets with categorical indices, i.e., different classes. Howeve
Predicting student performance is a fundamental task in Intelligent Tutoring Systems (ITSs), by which we can learn about students knowledge level and provide personalized teaching strategies for them. Researchers have made plenty of efforts on this t
Social learning, i.e., students learning from each other through social interactions, has the potential to significantly scale up instruction in online education. In many cases, such as in massive open online courses (MOOCs), social learning is facil