ﻻ يوجد ملخص باللغة العربية
Problem-Based Learning (PBL) is a popular approach to instruction that supports students to get hands-on training by solving problems. Question Pool websites (QPs) such as LeetCode, Code Chef, and Math Playground help PBL by supplying authentic, diverse, and contextualized questions to students. Nonetheless, empirical findings suggest that 40% to 80% of students registered in QPs drop out in less than two months. This research is the first attempt to understand and predict student dropouts from QPs via exploiting students engagement moods. Adopting a data-driven approach, we identify five different engagement moods for QP students, which are namely challenge-seeker, subject-seeker, interest-seeker, joy-seeker, and non-seeker. We find that students have collective preferences for answering questions in each engagement mood, and deviation from those preferences increases their probability of dropping out significantly. Last but not least, this paper contributes by introducing a new hybrid machine learning model (we call Dropout-Plus) for predicting student dropouts in QPs. The test results on a popular QP in China, with nearly 10K students, show that Dropout-Plus can exceed the rival algorithms dropout prediction performance in terms of accuracy, F1-measure, and AUC. We wrap up our work by giving some design suggestions to QP managers and online learning professionals to reduce their student dropouts.
In order to obtain reliable accuracy estimates for automatic MOOC dropout predictors, it is important to train and test them in a manner consistent with how they will be used in practice. Yet most prior research on MOOC dropout prediction has measure
Clickstreams on individual websites have been studied for decades to gain insights into user interests and to improve website experiences. This paper proposes and examines a novel sequence modeling approach for web clickstreams, that also considers m
Knowledge of quantum mechanical systems is becoming more important for many science and engineering students who are looking to join the emerging quantum workforce. To better prepare a wide range of students for these careers, we must seek to develop
This paper presents a pilot study on developing an instrument to predict the quality of e-commerce websites. The 8C model was adopted as the reference model of the heuristic evaluation. Each dimension of the 8C was mapped into a set of quantitative w
An Intelligent Tutoring System (ITS) has been shown to improve students learning outcomes by providing a personalized curriculum that addresses individual needs of every student. However, despite the effectiveness and efficiency that ITS brings to st