ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph-based Exercise- and Knowledge-Aware Learning Network for Student Performance Prediction

68   0   0.0 ( 0 )
 نشر من قبل Mengfan Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting student performance is a fundamental task in Intelligent Tutoring Systems (ITSs), by which we can learn about students knowledge level and provide personalized teaching strategies for them. Researchers have made plenty of efforts on this task. They either leverage educational psychology methods to predict students scores according to the learned knowledge proficiency, or make full use of Collaborative Filtering (CF) models to represent latent factors of students and exercises. However, most of these methods either neglect the exercise-specific characteristics (e.g., exercise materials), or cannot fully explore the high-order interactions between students, exercises, as well as knowledge concepts. To this end, we propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction. Specifically, we learn students mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts. Then, to model the high-order interactions, we apply graph convolution techniques in the prediction process. Extensive experiments on two real-world datasets prove the effectiveness of our proposed Graph-EKLN.



قيم البحث

اقرأ أيضاً

136 - Zixuan Li , Xiaolong Jin , Wei Li 2021
Knowledge Graph (KG) reasoning that predicts missing facts for incomplete KGs has been widely explored. However, reasoning over Temporal KG (TKG) that predicts facts in the future is still far from resolved. The key to predict future facts is to thor oughly understand the historical facts. A TKG is actually a sequence of KGs corresponding to different timestamps, where all concurrent facts in each KG exhibit structural dependencies and temporally adjacent facts carry informative sequential patterns. To capture these properties effectively and efficiently, we propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN), called RE-GCN, which learns the evolutional representations of entities and relations at each timestamp by modeling the KG sequence recurrently. Specifically, for the evolution unit, a relation-aware GCN is leveraged to capture the structural dependencies within the KG at each timestamp. In order to capture the sequential patterns of all facts in parallel, the historical KG sequence is modeled auto-regressively by the gate recurrent components. Moreover, the static properties of entities such as entity types, are also incorporated via a static graph constraint component to obtain better entity representations. Fact prediction at future timestamps can then be realized based on the evolutional entity and relation representations. Extensive experiments demonstrate that the RE-GCN model obtains substantial performance and efficiency improvement for the temporal reasoning tasks on six benchmark datasets. Especially, it achieves up to 11.46% improvement in MRR for entity prediction with up to 82 times speedup comparing to the state-of-the-art baseline.
Knowledge graph completion (KGC) has become a focus of attention across deep learning community owing to its excellent contribution to numerous downstream tasks. Although recently have witnessed a surge of work on KGC, they are still insufficient to accurately capture complex relations, since they adopt the single and static representations. In this work, we propose a novel Disentangled Knowledge Graph Attention Network (DisenKGAT) for KGC, which leverages both micro-disentanglement and macro-disentanglement to exploit representations behind Knowledge graphs (KGs). To achieve micro-disentanglement, we put forward a novel relation-aware aggregation to learn diverse component representation. For macro-disentanglement, we leverage mutual information as a regularization to enhance independence. With the assistance of disentanglement, our model is able to generate adaptive representations in terms of the given scenario. Besides, our work has strong robustness and flexibility to adapt to various score functions. Extensive experiments on public benchmark datasets have been conducted to validate the superiority of DisenKGAT over existing methods in terms of both accuracy and explainability.
Leveraging domain knowledge including fingerprints and functional groups in molecular representation learning is crucial for chemical property prediction and drug discovery. When modeling the relation between graph structure and molecular properties implicitly, existing works can hardly capture structural or property changes and complex structure, with much smaller atom vocabulary and highly frequent atoms. In this paper, we propose the Contrastive Knowledge-aware GNN (CKGNN) for self-supervised molecular representation learning to fuse domain knowledge into molecular graph representation. We explicitly encode domain knowledge via knowledge-aware molecular encoder under the contrastive learning framework, ensuring that the generated molecular embeddings equipped with chemical domain knowledge to distinguish molecules with similar chemical formula but dissimilar functions. Extensive experiments on 8 public datasets demonstrate the effectiveness of our model with a 6% absolute improvement on average against strong competitors. Ablation study and further investigation also verify the best of both worlds: incorporation of chemical domain knowledge into self-supervised learning.
210 - Yang Yang , Jian Shen , Yanru Qu 2020
With the rapid development in online education, knowledge tracing (KT) has become a fundamental problem which traces students knowledge status and predicts their performance on new questions. Questions are often numerous in online education systems, and are always associated with much fewer skills. However, the previous literature fails to involve question information together with high-order question-skill correlations, which is mostly limited by data sparsity and multi-skill problems. From the model perspective, previous models can hardly capture the long-term dependency of student exercise history, and cannot model the interactions between student-questions, and student-skills in a consistent way. In this paper, we propose a Graph-based Interaction model for Knowledge Tracing (GIKT) to tackle the above probems. More specifically, GIKT utilizes graph convolutional network (GCN) to substantially incorporate question-skill correlations via embedding propagation. Besides, considering that relevant questions are usually scattered throughout the exercise history, and that question and skill are just different instantiations of knowledge, GIKT generalizes the degree of students master of the question to the interactions between the students current state, the students history related exercises, the target question, and related skills. Experiments on three datasets demonstrate that GIKT achieves the new state-of-the-art performance, with at least 1% absolute AUC improvement.
Interference between pharmacological substances can cause serious medical injuries. Correctly predicting so-called drug-drug interactions (DDI) does not only reduce these cases but can also result in a reduction of drug development cost. Presently, m ost drug-related knowledge is the result of clinical evaluations and post-marketing surveillance; resulting in a limited amount of information. Existing data-driven prediction approaches for DDIs typically rely on a single source of information, while using information from multiple sources would help improve predictions. Machine learning (ML) techniques are used, but the techniques are often unable to deal with skewness in the data. Hence, we propose a new ML approach for predicting DDIs based on multiple data sources. For this task, we use 12,000 drug features from DrugBank, PharmGKB, and KEGG drugs, which are integrated using Knowledge Graphs (KGs). To train our prediction model, we first embed the nodes in the graph using various embedding approaches. We found that the best performing combination was a ComplEx embedding method creating using PyTorch-BigGraph (PBG) with a Convolutional-LSTM network and classic machine learning-based prediction models. The model averaging ensemble method of three best classifiers yields up to 0.94, 0.92, 0.80 for AUPR, F1-score, and MCC, respectively during 5-fold cross-validation tests.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا