ترغب بنشر مسار تعليمي؟ اضغط هنا

Delving into Deep Imbalanced Regression

94   0   0.0 ( 0 )
 نشر من قبل Yuzhe Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Real-world data often exhibit imbalanced distributions, where certain target values have significantly fewer observations. Existing techniques for dealing with imbalanced data focus on targets with categorical indices, i.e., different classes. However, many tasks involve continuous targets, where hard boundaries between classes do not exist. We define Deep Imbalanced Regression (DIR) as learning from such imbalanced data with continuous targets, dealing with potential missing data for certain target values, and generalizing to the entire target range. Motivated by the intrinsic difference between categorical and continuous label space, we propose distribution smoothing for both labels and features, which explicitly acknowledges the effects of nearby targets, and calibrates both label and learned feature distributions. We curate and benchmark large-scale DIR datasets from common real-world tasks in computer vision, natural language processing, and healthcare domains. Extensive experiments verify the superior performance of our strategies. Our work fills the gap in benchmarks and techniques for practical imbalanced regression problems. Code and data are available at https://github.com/YyzHarry/imbalanced-regression.



قيم البحث

اقرأ أيضاً

In physical design, human designers typically place macros via trial and error, which is a Markov decision process. Reinforcement learning (RL) methods have demonstrated superhuman performance on the macro placement. In this paper, we propose an exte nsion to this prior work (Mirhoseini et al., 2020). We first describe the details of the policy and value network architecture. We replace the force-directed method with DREAMPlace for placing standard cells in the RL environment. We also compare our improved method with other academic placers on public benchmarks.
Data in real-world application often exhibit skewed class distribution which poses an intense challenge for machine learning. Conventional classification algorithms are not effective in the case of imbalanced data distribution, and may fail when the data distribution is highly imbalanced. To address this issue, we propose a general imbalanced classification model based on deep reinforcement learning. We formulate the classification problem as a sequential decision-making process and solve it by deep Q-learning network. The agent performs a classification action on one sample at each time step, and the environment evaluates the classification action and returns a reward to the agent. The reward from minority class sample is larger so the agent is more sensitive to the minority class. The agent finally finds an optimal classification policy in imbalanced data under the guidance of specific reward function and beneficial learning environment. Experiments show that our proposed model outperforms the other imbalanced classification algorithms, and it can identify more minority samples and has great classification performance.
147 - Yuhong Li , Cong Hao , Pan Li 2021
Most existing neural architecture search (NAS) algorithms are dedicated to the downstream tasks, e.g., image classification in computer vision. However, extensive experiments have shown that, prominent neural architectures, such as ResNet in computer vision and LSTM in natural language processing, are generally good at extracting patterns from the input data and perform well on different downstream tasks. These observations inspire us to ask: Is it necessary to use the performance of specific downstream tasks to evaluate and search for good neural architectures? Can we perform NAS effectively and efficiently while being agnostic to the downstream task? In this work, we attempt to affirmatively answer the above two questions and improve the state-of-the-art NAS solution by proposing a novel and generic NAS framework, termed Generic NAS (GenNAS). GenNAS does not use task-specific labels but instead adopts textit{regression} on a set of manually designed synthetic signal bases for architecture evaluation. Such a self-supervised regression task can effectively evaluate the intrinsic power of an architecture to capture and transform the input signal patterns, and allow more sufficient usage of training samples. We then propose an automatic task search to optimize the combination of synthetic signals using limited downstream-task-specific labels, further improving the performance of GenNAS. We also thoroughly evaluate GenNASs generality and end-to-end NAS performance on all search spaces, which outperforms almost all existing works with significant speedup.
Hepatocellular carcinoma (HCC) is the second most frequent cause of malignancy-related death and is one of the diseases with the highest incidence in the world. Because the liver is the only organ in the human body that is supplied by two major vesse ls: the hepatic artery and the portal vein, various types of malignant tumors can spread from other organs to the liver. And due to the liver masses heterogeneous and diffusive shape, the tumor lesions are very difficult to be recognized, thus automatic lesion detection is necessary for the doctors with huge workloads. To assist doctors, this work uses the existing large-scale annotation medical image data to delve deep into liver lesion detection from multiple directions. To solve technical difficulties, such as the image-recognition task, traditional deep learning with convolution neural networks (CNNs) has been widely applied in recent years. However, this kind of neural network, such as Faster Regions with CNN features (R-CNN), cannot leverage the spatial information because it is applied in natural images (2D) rather than medical images (3D), such as computed tomography (CT) images. To address this issue, we propose a novel algorithm that is appropriate for liver CT imaging. Furthermore, according to radiologists experience in clinical diagnosis and the characteristics of CT images of liver cancer, a liver cancer-detection framework with CNN, including image processing, feature extraction, region proposal, image registration, and classification recognition, was proposed to facilitate the effective detection of liver lesions.
Recently, Vision Transformers (ViTs) have achieved impressive results on various vision tasks. Yet, their generalization ability under different distribution shifts is rarely understood. In this work, we provide a comprehensive study on the out-of-di stribution generalization of ViTs. To support a systematic investigation, we first present a taxonomy of distribution shifts by categorizing them into five conceptual groups: corruption shift, background shift, texture shift, destruction shift, and style shift. Then we perform extensive evaluations of ViT variants under different groups of distribution shifts and compare their generalization ability with CNNs. Several important observations are obtained: 1) ViTs generalize better than CNNs under multiple distribution shifts. With the same or fewer parameters, ViTs are ahead of corresponding CNNs by more than 5% in top-1 accuracy under most distribution shifts. 2) Larger ViTs gradually narrow the in-distribution and out-of-distribution performance gap. To further improve the generalization of ViTs, we design the Generalization-Enhanced ViTs by integrating adversarial learning, information theory, and self-supervised learning. By investigating three types of generalization-enhanced ViTs, we observe their gradient-sensitivity and design a smoother learning strategy to achieve a stable training process. With modified training schemes, we achieve improvements on performance towards out-of-distribution data by 4% from vanilla ViTs. We comprehensively compare three generalization-enhanced ViTs with their corresponding CNNs, and observe that: 1) For the enhanced model, larger ViTs still benefit more for the out-of-distribution generalization. 2) generalization-enhanced ViTs are more sensitive to the hyper-parameters than corresponding CNNs. We hope our comprehensive study could shed light on the design of more generalizable learning architectures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا