ﻻ يوجد ملخص باللغة العربية
In the first paper of this series (arxiv.org/abs/1210.2961) we studied the asymptotic behavior of Betti numbers, twisted torsion and other spectral invariants for sequences of lattices in Lie groups G. A key element of our work was the study of invariant random subgroups (IRSs) of G. Any sequence of lattices has a subsequence converging to an IRS, and when G has higher rank, the Nevo-Stuck-Zimmer theorem classifies all IRSs of G. Using the classification, one can deduce asymptotic statments about spectral invariants of lattices. When G has real rank one, the space of IRSs is more complicated. We construct here several uncountable families of IRSs in the groups SO(n,1). We give dimension-specific constructions when n=2,3, and also describe a general gluing construction that works for every n at least 2. Part of the latter construction is inspired by Gromov and Piatetski-Shapiros construction of non-arithmetic lattices in SO(n,1).
We construct a natural framed weight system on chord diagrams from the curvature tensor of any pseudo-Riemannian symmetric space. These weight systems are of Lie algebra type and realized by the action of the holonomy Lie algebra on a tangent space.
In this paper, we classify three-locally-symmetric spaces for a connected, compact and simple Lie group. Furthermore, we give the classification of invariant Einstein metrics on these spaces.
In this paper we generalize a result in [1], showing that an arbitrary Riemannian symmetric space can be realized as a closed submanifold of a covering group of the Lie group defining the symmetric space. Some properties of the subgroups of fixed points of involutions are also proved.
We classify the ergodic invariant random subgroups of block-diagonal limits of symmetric groups in the cases when the groups are simple and the associated dimension groups have finite dimensional state spaces. These block-diagonal limits arise as the
We construct compactifications of Riemannian locally symmetric spaces arising as quotients by Anosov representations. These compactifications are modeled on generalized Satake compactifications and, in certain cases, on maximal Satake compactificatio