ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant Einstein metrics on three-locally-symmetric spaces

358   0   0.0 ( 0 )
 نشر من قبل Zhiqi Chen
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we classify three-locally-symmetric spaces for a connected, compact and simple Lie group. Furthermore, we give the classification of invariant Einstein metrics on these spaces.



قيم البحث

اقرأ أيضاً

141 - Cornelia Drutu 2008
We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces $T_n=SO(n) backslash SL(n,R) /SL(n,Z)$ with $n>1$, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space $T_n$ and the way this family is approximated is reflected by the heights at which the ray rises in the cuspidal end. The only difference between the two types of approximation appearing in a Transference Theorem is that the height is measured with respect to different rays in $W$, a Weyl chamber in $T_n$. Thus the Transference Theorem is equivalent to a relation between the Busemann functions of two rays in $W$. This relation is easy to establish on $W$, because restricted to it the two Busemann functions become two linear forms. Since $T_n$ is at finite Hausdorff distance from $W$, the same relation is satisfied up to a bounded perturbation on the whole of $T_n$.
The systole of a closed Riemannian manifold is the minimal length of a non-contractible closed loop. We give a uniform lower bound for the systole for large classes of simple arithmetic locally symmetric orbifolds. We establish new bounds for the tra nslation length of a semisimple element x in SL_n(R) in terms of its associated Mahler measure. We use these geometric methods to prove the existence of extensions of number fields in which fixed sets of primes have certain prescribed splitting behavior.
In this paper, the necessary and sufficient conditions for Matsumoto metrics $F=frac{alpha^2}{alpha-beta}$ to be Einstein are given. It is shown that if the length of $beta$ with respect to $alpha$ is constant, then the Matsumoto metric $F$ is an Ein stein metric if and only if $alpha$ is Ricci-flat and $beta$ is parallel with respect to $alpha$. A nontrivial example of Ricci flat Matsumoto metrics is given.
140 - Thomas Haettel 2021
In this article, we show that the Goldman-Iwahori metric on the space of all norms on a fixed vector space satisfies the Helly property for balls. On the non-Archimedean side, we deduce that most classical Bruhat-Tits buildings may be endowed with a natural piecewise $ell^infty$ metric which is injective. We also prove that most classical semisimple groups over non-Archimedean local fields act properly and cocompactly on Helly graphs. This gives another proof of biautomaticity for their uniform lattices. On the Archimedean side, we deduce that most classical symmetric spaces of non-compact type may be endowed with a natural piecewise $ell^infty$ metric which is coarsely Helly. We also prove that most classical semisimple groups over Archimedean local fields act properly and cocompactly on injective metric spaces. The only exception is the special linear group: if $n geq 3$ and $mathbb{K}$ is a local field, we show that $operatorname{SL}(n,mathbb{K})$ does not act properly and coboundedly on an injective metric space.
We prove that the geodesic equations of all Sobolev metrics of fractional order one and higher on spaces of diffeomorphisms and, more generally, immersions are locally well posed. This result builds on the recently established real analytic dependenc e of fractional Laplacians on the underlying Riemannian metric. It extends several previous results and applies to a wide range of variational partial differential equations, including the well-known Euler-Arnold equations on diffeomorphism groups as well as the geodesic equations on spaces of manifold-valued curves and surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا