ﻻ يوجد ملخص باللغة العربية
We classify the ergodic invariant random subgroups of block-diagonal limits of symmetric groups in the cases when the groups are simple and the associated dimension groups have finite dimensional state spaces. These block-diagonal limits arise as the transformation groups (full groups) of Bratteli diagrams that preserve the cofinality of infinite paths in the diagram. Given a simple full group $G$ admitting only a finite number of ergodic measures on the path-space $X$ of the associated Bratteli digram, we prove that every non-Dirac ergodic invariant random subgroup of $G$ arises as the stabilizer distribution of the diagonal action on $X^n$ for some $ngeq 1$. As a corollary, we establish that every group character $chi$ of $G$ has the form $chi(g) = Prob(gin K)$, where $K$ is a conjugation-invariant random subgroup of $G$.
We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wre
Let $X$ be a proper geodesic Gromov hyperbolic metric space and let $G$ be a cocompact group of isometries of $X$ admitting a uniform lattice. Let $d$ be the Hausdorff dimension of the Gromov boundary $partial X$. We define the critical exponent $del
Let $G$ be a higher rank semisimple linear algebraic group over a non-Archimedean local field. The simplicial complexes corresponding to any sequence of pairwise non-conjugate irreducible lattices in $G$ are Benjamini-Schramm convergent to the Bruhat
Every sequence of orbifolds corresponding to pairwise non-conjugate congruence lattices in a higher rank semisimple group over local fields of zero characteristic is Benjamini--Schramm convergent to the universal cover.
Let $G$ be a finite group and $sigma ={sigma_{i} | iin I}$ some partition of the set of all primes $Bbb{P}$, that is, $sigma ={sigma_{i} | iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_{i}$ and $sigma_{i}cap sigma_{j}= emptyset $ for all $i e j$. We s