ﻻ يوجد ملخص باللغة العربية
We construct compactifications of Riemannian locally symmetric spaces arising as quotients by Anosov representations. These compactifications are modeled on generalized Satake compactifications and, in certain cases, on maximal Satake compactifications. We deduce that these Riemannian locally symmetric spaces are topologically tame, i.e. homeomorphic to the interior of a compact manifold with boundary. We also construct domains of discontinuity (not necessarily with a compact quotient) in a much more general setting.
In this paper we provide a negative answer to a question of Farb about the relation between the algebraic degree of the stretch factor of a pseudo-Anosov homeomorphism and the genus of the surface on which it is defined.
In this paper we generalize a result in [1], showing that an arbitrary Riemannian symmetric space can be realized as a closed submanifold of a covering group of the Lie group defining the symmetric space. Some properties of the subgroups of fixed points of involutions are also proved.
We construct a CW decomposition $C_n$ of the $n$-dimensional half cube in a manner compatible with its structure as a polytope. For each $3 leq k leq n$, the complex $C_n$ has a subcomplex $C_{n, k}$, which coincides with the clique complex of the ha
We construct a natural framed weight system on chord diagrams from the curvature tensor of any pseudo-Riemannian symmetric space. These weight systems are of Lie algebra type and realized by the action of the holonomy Lie algebra on a tangent space.
We list up all the possible local orbit types of hyperbolic or elliptic orbits for the isotropy representations of semisimple pseudo-Riemannian symmetric spaces. It is key to give a recipe to determine the local orbit types of hyperbolic principal or