ترغب بنشر مسار تعليمي؟ اضغط هنا

On the realization of Riemannian symmetric spaces in Lie groups II

112   0   0.0 ( 0 )
 نشر من قبل Jinpeng An
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we generalize a result in [1], showing that an arbitrary Riemannian symmetric space can be realized as a closed submanifold of a covering group of the Lie group defining the symmetric space. Some properties of the subgroups of fixed points of involutions are also proved.



قيم البحث

اقرأ أيضاً

We construct compactifications of Riemannian locally symmetric spaces arising as quotients by Anosov representations. These compactifications are modeled on generalized Satake compactifications and, in certain cases, on maximal Satake compactificatio ns. We deduce that these Riemannian locally symmetric spaces are topologically tame, i.e. homeomorphic to the interior of a compact manifold with boundary. We also construct domains of discontinuity (not necessarily with a compact quotient) in a much more general setting.
326 - Zhu Fuhai , Chen Zhiqi , Liang Ke 2020
Let $G$ be a connected, simply-connected, compact simple Lie group. In this paper, we show that the isometry group of $G$ with a left-invariant pseudo-Riemannan metric is compact. Furthermore, the identity component of the isometry group is compact if $G$ is not simply-connected.
In the first paper of this series (arxiv.org/abs/1210.2961) we studied the asymptotic behavior of Betti numbers, twisted torsion and other spectral invariants for sequences of lattices in Lie groups G. A key element of our work was the study of invar iant random subgroups (IRSs) of G. Any sequence of lattices has a subsequence converging to an IRS, and when G has higher rank, the Nevo-Stuck-Zimmer theorem classifies all IRSs of G. Using the classification, one can deduce asymptotic statments about spectral invariants of lattices. When G has real rank one, the space of IRSs is more complicated. We construct here several uncountable families of IRSs in the groups SO(n,1). We give dimension-specific constructions when n=2,3, and also describe a general gluing construction that works for every n at least 2. Part of the latter construction is inspired by Gromov and Piatetski-Shapiros construction of non-arithmetic lattices in SO(n,1).
A classic theorem of Kazhdan and Margulis states that for any semisimple Lie group without compact factors, there is a positive lower bound on the covolume of lattices. H. C. Wangs subsequent quantitative analysis showed that the fundamental domain o f any lattice contains a ball whose radius depends only on the group itself. A direct consequence is a positive minimum volume for orbifolds modeled on the corresponding symmetric space. However, sharp bounds are known only for hyperbolic orbifolds of dimensions two and three, and recently for quaternionic hyperbolic orbifolds of all dimensions. As in arXiv:0911.4712 and arXiv:1205.2011, this article combines H. C. Wangs radius estimate with an improved upper sectional curvature bound for a canonical left-invariant metric on a real semisimple Lie group and uses Gunthers volume comparison theorem to deduce an explicit uniform lower volume bound for arbitrary orbifold quotients of a given irreducible symmetric spaces of non-compact type. The numerical bound for the octonionic hyperbolic plane is the first such bound to be given. For (real) hyperbolic orbifolds of dimension greater than three, the bounds are an improvement over what was previously known.
We consider random stochastic matrices $M$ with elements given by $M_{ij}=|U_{ij}|^2$, with $U$ being uniformly distributed on one of the classical compact Lie groups or associated symmetric spaces. We observe numerically that, for large dimensions, the spectral statistics of $M$, discarding the Perron-Frobenius eigenvalue $1$, are similar to those of the Gaussian Orthogonal ensemble for symmetric matrices and to those of the real Ginibre ensemble for non-symmetric matrices. Using Weingarten functions, we compute some spectral statistics that corroborate this universality. We also establish connections with some difficult enumerative problems involving permutations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا