ﻻ يوجد ملخص باللغة العربية
The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient ({alpha}) of multiferroics. Because the states of {alpha} depends on the relative orientation between magnetization and polarization, one can reach different levels of {alpha} by controlling the ratio of up and down ferroelectric domains with external electric fields. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure confirm that the states of {alpha} can be well controlled between positive and negative by applying selective electric fields. Consequently, two-level, four-level, and eight-level nonvolatile memory devices are demonstrated at room temperature. This kind of multilevel magnetoelectric memory retains all the advantages of ferroelectric random access memory but overcomes the drawback of destructive reading of polarization. In contrast, the reading of {alpha} is nondestructive and highly efficient in a parallel way, with an independent reading coil shared by all the memory cells.
Memtranstor that correlates charge and magnetic flux via nonlinear magnetoelectric effects has a great potential in developing next-generation nonvolatile devices. In addition to multi-level nonvolatile memory, we demonstrate here that nonvolatile lo
The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We conceive a new concept of non-volatile memories based on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hystere
Manipulation of tunneling spin-polarized electrons via a ferroelectric interlayer sandwiched between two ferromagnetic electrodes, dubbed Multiferroic Tunnel Junctions (MFTJs), can be achieved not only by the magnetic alignments of two ferromagnets b
Analogous to conventional charge-based electronics, valleytronics aims at encoding data via the valley degree of freedom, enabling new routes for information processing. Long-lived interlayer excitons (IXs) in van der Waals heterostructures (HSs) sta
Antiferromagnets have been generating intense interest in the spintronics community, owing to their intrinsic appealing properties like zero stray field and ultrafast spin dynamics. While the control of antiferromagnetic (AFM) orders has been realize