ﻻ يوجد ملخص باللغة العربية
Manipulation of tunneling spin-polarized electrons via a ferroelectric interlayer sandwiched between two ferromagnetic electrodes, dubbed Multiferroic Tunnel Junctions (MFTJs), can be achieved not only by the magnetic alignments of two ferromagnets but also by the electric polarization of the ferroelectric interlayer, providing great opportunities for next-generation multi-state memory devices. Here we show that a La0.67Sr0.33MnO3 (LSMO)/PbZr0.2Ti0.8O3(PZT)/Co structured MFTJ device can exhibit multilevel resistance states in the presence of gradually reversed ferroelectric domains via tunneling electro-resistance and tunneling magnetoresistance, respectively. The nonvolatile ferroelectric control in the MFTJ can be attributed to separate contributions arising from two independent ferroelectric channels in the PZT interlayer with opposite polarization. Our study shows the dominant role of mixed ferroelectric states on achieving accumulative electrical modulation of multilevel resistance states in MFTJs, paving the way for multifunctional device applications.
Organic multiferroic tunnel junctions (OMFTJs) with multi-resistance states have been proposed and drawn intensive interests due to their potential applications, for examples of memristor and spintronics based synapse devices. The ferroelectric contr
The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories hav
The magnetic tunnel junction is a cornerstone of spintronic devices and circuits, providing the main way to convert between magnetic and electrical information. In state-of-the-art magnetic tunnel junctions, magnesium oxide is used as the tunnel barr
We consider a new kind of superconducting proximity effect created by the tunneling of spin split Cooper pairs between two conventional superconductors connected by a normal conductor containing a quantum dot. The difference compared to the usual sup
Utilizing Co/Al$_2$O$_3$/Co magnetic tunnel junctions (MTJs) with Co electrodes of different crystalline phases, a clear relationship between electrode structure and junction transport properties is presented. For junctions with one fcc(111) textured