ترغب بنشر مسار تعليمي؟ اضغط هنا

Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes

84   0   0.0 ( 0 )
 نشر من قبل Carlo Baldassi
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost-function. It is not well understood how learning occurs in these systems, in particular how they avoid getting trapped in configurations with poor computational performance. Here we study the difficult case of networks with discrete weights, where the optimization landscape is very rough even for simple architectures, and provide theoretical and numerical evidence of the existence of rare - but extremely dense and accessible - regions of configurations in the network weight space. We define a novel measure, which we call the robust ensemble (RE), which suppresses trapping by isolated configurations and amplifies the role of these dense regions. We analytically compute the RE in some exactly solvable models, and also provide a general algorithmic scheme which is straightforward to implement: define a cost-function given by a sum of a finite number of replicas of the original cost-function, with a constraint centering the replicas around a driving assignment. To illustrate this, we derive several powerful new algorithms, ranging from Markov Chains to message passing to gradient descent processes, where the algorithms target the robust dense states, resulting in substantial improvements in performance. The weak dependence on the number of precision bits of the weights leads us to conjecture that very similar reasoning applies to more conventional neural networks. Analogous algorithmic schemes can also be applied to other optimization problems.

قيم البحث

اقرأ أيضاً

Despite the widely-spread consensus on the brain complexity, sprouts of the single neuron revolution emerged in neuroscience in the 1970s. They brought many unexpected discoveries, including grandmother or concept cells and sparse coding of informati on in the brain. In machine learning for a long time, the famous curse of dimensionality seemed to be an unsolvable problem. Nevertheless, the idea of the blessing of dimensionality becomes gradually more and more popular. Ensembles of non-interacting or weakly interacting simple units prove to be an effective tool for solving essentially multidimensional problems. This approach is especially useful for one-shot (non-iterative) correction of errors in large legacy artificial intelligence systems. These simplicity revolutions in the era of complexity have deep fundamental reasons grounded in geometry of multidimensional data spaces. To explore and understand these reasons we revisit the background ideas of statistical physics. In the course of the 20th century they were developed into the concentration of measure theory. New stochastic separation theorems reveal the fine structure of the data clouds. We review and analyse biological, physical, and mathematical problems at the core of the fundamental question: how can high-dimensional brain organise reliable and fast learning in high-dimensional world of data by simple tools? Two critical applications are reviewed to exemplify the approach: one-shot correction of errors in intellectual systems and emergence of static and associative memories in ensembles of single neurons.
We investigate the topics of sensitivity and robustness in feedforward and convolutional neural networks. Combining energy landscape techniques developed in computational chemistry with tools drawn from formal methods, we produce empirical evidence i ndicating that networks corresponding to lower-lying minima in the optimization landscape of the learning objective tend to be more robust. The robustness estimate used is the inverse of a proposed sensitivity measure, which we define as the volume of an over-approximation of the reachable set of network outputs under all additive $l_{infty}$-bounded perturbations on the input data. We present a novel loss function which includes a sensitivity term in addition to the traditional task-oriented and regularization terms. In our experiments on standard machine learning and computer vision datasets, we show that the proposed loss function leads to networks which reliably optimize the robustness measure as well as other related metrics of adversarial robustness without significant degradation in the classification error. Experimental results indicate that the proposed method outperforms state-of-the-art sensitivity-based learning approaches with regards to robustness to adversarial attacks. We also show that although the introduced framework does not explicitly enforce an adversarial loss, it achieves competitive overall performance relative to methods that do.
Training an artificial neural network involves an optimization process over the landscape defined by the cost (loss) as a function of the network parameters. We explore these landscapes using optimisation tools developed for potential energy landscap es in molecular science. The number of local minima and transition states (saddle points of index one), as well as the ratio of transition states to minima, grow rapidly with the number of nodes in the network. There is also a strong dependence on the regularisation parameter, with the landscape becoming more convex (fewer minima) as the regularisation term increases. We demonstrate that in our formulation, stationary points for networks with $N_h$ hidden nodes, including the minimal network required to fit the XOR data, are also stationary points for networks with $N_{h} +1$ hidden nodes when all the weights involving the additional nodes are zero. Hence, smaller networks optimized to train the XOR data are embedded in the landscapes of larger networks. Our results clarify certain aspects of the classification and sensitivity (to perturbations in the input data) of minima and saddle points for this system, and may provide insight into dropout and network compression.
We recapitulate the Bayesian formulation of neural network based classifiers and show that, while sampling from the posterior does indeed lead to better generalisation than is obtained by standard optimisation of the cost function, even better perfor mance can in general be achieved by sampling finite temperature ($T$) distributions derived from the posterior. Taking the example of two different deep (3 hidden layers) classifiers for MNIST data, we find quite different $T$ values to be appropriate in each case. In particular, for a typical neural network classifier a clear minimum of the test error is observed at $T>0$. This suggests an early stopping criterion for full batch simulated annealing: cool until the average validation error starts to increase, then revert to the parameters with the lowest validation error. As $T$ is increased classifiers transition from accurate classifiers to classifiers that have higher training error than assigning equal probability to each class. Efficient studies of these temperature-induced effects are enabled using a replica-exchange Hamiltonian Monte Carlo simulation technique. Finally, we show how thermodynamic integration can be used to perform model selection for deep neural networks. Similar to the Laplace approximation, this approach assumes that the posterior is dominated by a single mode. Crucially, however, no assumption is made about the shape of that mode and it is not required to precisely compute and invert the Hessian.
62 - Chapman Siu 2019
Gradient Boosting Decision Tree (GBDT) are popular machine learning algorithms with implementations such as LightGBM and in popular machine learning toolkits like Scikit-Learn. Many implementations can only produce trees in an offline manner and in a greedy manner. We explore ways to convert existing GBDT implementations to known neural network architectures with minimal performance loss in order to allow decision splits to be updated in an online manner and provide extensions to allow splits points to be altered as a neural architecture search problem. We provide learning bounds for our neural network.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا