ﻻ يوجد ملخص باللغة العربية
We investigate the topics of sensitivity and robustness in feedforward and convolutional neural networks. Combining energy landscape techniques developed in computational chemistry with tools drawn from formal methods, we produce empirical evidence indicating that networks corresponding to lower-lying minima in the optimization landscape of the learning objective tend to be more robust. The robustness estimate used is the inverse of a proposed sensitivity measure, which we define as the volume of an over-approximation of the reachable set of network outputs under all additive $l_{infty}$-bounded perturbations on the input data. We present a novel loss function which includes a sensitivity term in addition to the traditional task-oriented and regularization terms. In our experiments on standard machine learning and computer vision datasets, we show that the proposed loss function leads to networks which reliably optimize the robustness measure as well as other related metrics of adversarial robustness without significant degradation in the classification error. Experimental results indicate that the proposed method outperforms state-of-the-art sensitivity-based learning approaches with regards to robustness to adversarial attacks. We also show that although the introduced framework does not explicitly enforce an adversarial loss, it achieves competitive overall performance relative to methods that do.
Recent studies show a close connection between neural networks (NN) and kernel methods. However, most of these analyses (e.g., NTK) focus on the influence of (infinite) width instead of the depth of NN models. There remains a gap between theory and p
We consider learning two layer neural networks using stochastic gradient descent. The mean-field description of this learning dynamics approximates the evolution of the network weights by an evolution in the space of probability distributions in $R^D
Recent works have shown that interval bound propagation (IBP) can be used to train verifiably robust neural networks. Reseachers observe an intriguing phenomenon on these IBP trained networks: CROWN, a bounding method based on tight linear relaxation
In this paper we propose a generalization of deep neural networks called deep function machines (DFMs). DFMs act on vector spaces of arbitrary (possibly infinite) dimension and we show that a family of DFMs are invariant to the dimension of input dat
Despite the tremendous success of Stochastic Gradient Descent (SGD) algorithm in deep learning, little is known about how SGD finds generalizable solutions in the high-dimensional weight space. By analyzing the learning dynamics and loss function lan