ترغب بنشر مسار تعليمي؟ اضغط هنا

TreeGrad: Transferring Tree Ensembles to Neural Networks

63   0   0.0 ( 0 )
 نشر من قبل Chapman Siu
 تاريخ النشر 2019
والبحث باللغة English
 تأليف Chapman Siu




اسأل ChatGPT حول البحث

Gradient Boosting Decision Tree (GBDT) are popular machine learning algorithms with implementations such as LightGBM and in popular machine learning toolkits like Scikit-Learn. Many implementations can only produce trees in an offline manner and in a greedy manner. We explore ways to convert existing GBDT implementations to known neural network architectures with minimal performance loss in order to allow decision splits to be updated in an online manner and provide extensions to allow splits points to be altered as a neural architecture search problem. We provide learning bounds for our neural network.

قيم البحث

اقرأ أيضاً

Ensembles of decision trees perform well on many problems, but are not interpretable. In contrast to existing approaches in interpretability that focus on explaining relationships between features and predictions, we propose an alternative approach t o interpret tree ensemble classifiers by surfacing representative points for each class -- prototypes. We introduce a new distance for Gradient Boosted Tree models, and propose new, adaptive prototype selection methods with theoretical guarantees, with the flexibility to choose a different number of prototypes in each class. We demonstrate our methods on random forests and gradient boosted trees, showing that the prototypes can perform as well as or even better than the original tree ensemble when used as a nearest-prototype classifier. In a user study, humans were better at predicting the output of a tree ensemble classifier when using prototypes than when using Shapley values, a popular feature attribution method. Hence, prototypes present a viable alternative to feature-based explanations for tree ensembles.
This paper develops a novel stochastic tree ensemble method for nonlinear regression, which we refer to as XBART, short for Accelerated Bayesian Additive Regression Trees. By combining regularization and stochastic search strategies from Bayesian mod eling with computationally efficient techniques from recursive partitioning approaches, the new method attains state-of-the-art performance: in many settings it is both faster and more accurate than the widely-used XGBoost algorithm. Via careful simulation studies, we demonstrate that our new approach provides accurate point-wise estimates of the mean function and does so faster than popular alternatives, such as BART, XGBoost and neural networks (using Keras). We also prove a number of basic theoretical results about the new algorithm, including consistency of the single tree version of the model and stationarity of the Markov chain produced by the ensemble version. Furthermore, we demonstrate that initializing standard Bayesian additive regression trees Markov chain Monte Carlo (MCMC) at XBART-fitted trees considerably improves credible interval coverage and reduces total run-time.
We propose a novel Bayesian neural network architecture that can learn invariances from data alone by inferring a posterior distribution over different weight-sharing schemes. We show that our model outperforms other non-invariant architectures, when trained on datasets that contain specific invariances. The same holds true when no data augmentation is performed.
We propose a novel method, termed SuMo-net, that uses partially monotonic neural networks to learn a time-to-event distribution from a sample of covariates and right-censored times. SuMo-net models the survival function and the density jointly, and o ptimizes the likelihood for right-censored data instead of the often used partial likelihood. The method does not make assumptions about the true survival distribution and avoids computationally expensive integration of the hazard function. We evaluate the performance of the method on a range of datasets and find competitive performance across different metrics and improved computational time of making new predictions.
In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost-function. It is not well under stood how learning occurs in these systems, in particular how they avoid getting trapped in configurations with poor computational performance. Here we study the difficult case of networks with discrete weights, where the optimization landscape is very rough even for simple architectures, and provide theoretical and numerical evidence of the existence of rare - but extremely dense and accessible - regions of configurations in the network weight space. We define a novel measure, which we call the robust ensemble (RE), which suppresses trapping by isolated configurations and amplifies the role of these dense regions. We analytically compute the RE in some exactly solvable models, and also provide a general algorithmic scheme which is straightforward to implement: define a cost-function given by a sum of a finite number of replicas of the original cost-function, with a constraint centering the replicas around a driving assignment. To illustrate this, we derive several powerful new algorithms, ranging from Markov Chains to message passing to gradient descent processes, where the algorithms target the robust dense states, resulting in substantial improvements in performance. The weak dependence on the number of precision bits of the weights leads us to conjecture that very similar reasoning applies to more conventional neural networks. Analogous algorithmic schemes can also be applied to other optimization problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا