ﻻ يوجد ملخص باللغة العربية
Despite the widely-spread consensus on the brain complexity, sprouts of the single neuron revolution emerged in neuroscience in the 1970s. They brought many unexpected discoveries, including grandmother or concept cells and sparse coding of information in the brain. In machine learning for a long time, the famous curse of dimensionality seemed to be an unsolvable problem. Nevertheless, the idea of the blessing of dimensionality becomes gradually more and more popular. Ensembles of non-interacting or weakly interacting simple units prove to be an effective tool for solving essentially multidimensional problems. This approach is especially useful for one-shot (non-iterative) correction of errors in large legacy artificial intelligence systems. These simplicity revolutions in the era of complexity have deep fundamental reasons grounded in geometry of multidimensional data spaces. To explore and understand these reasons we revisit the background ideas of statistical physics. In the course of the 20th century they were developed into the concentration of measure theory. New stochastic separation theorems reveal the fine structure of the data clouds. We review and analyse biological, physical, and mathematical problems at the core of the fundamental question: how can high-dimensional brain organise reliable and fast learning in high-dimensional world of data by simple tools? Two critical applications are reviewed to exemplify the approach: one-shot correction of errors in intellectual systems and emergence of static and associative memories in ensembles of single neurons.
Optimal transport has become part of the standard quantitative economics toolbox. It is the framework of choice to describe models of matching with transfers, but beyond that, it allows to: extend quantile regression; identify discrete choice models;
In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost-function. It is not well under
This article surveys engineering and neuroscientific models of planning as a cognitive function, which is regarded as a typical function of fluid intelligence in the discussion of general intelligence. It aims to present existing planning models as r
Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive arch
Working with data in table form is usually considered a preparatory and tedious step in the sensemaking pipeline; a way of getting the data ready for more sophisticated visualization and analytical tools. But for many people, spreadsheets -- the quin