ﻻ يوجد ملخص باللغة العربية
In the 70s Smith and Tassie, and Bell and Ruegg independently found SU(2) symmetries of the Dirac equation with scalar and vector potentials. These symmetries, known as pseudospin and spin symmetries, have been extensively researched and applied to several physical systems. Twenty years after, in 1997, the pseudospin symmetry has been revealed by Ginocchio as a relativistic symmetry of the atomic nuclei when it is described by relativistic mean field hadronic models. The main feature of these symmetries is the suppression of the spin-orbit coupling either in the upper or lower components of the Dirac spinor, thereby turning the respective second-order equations into Schrodinger-like equations, i.e, without a matrix structure. In this paper we propose a generalization of these SU(2) symmetries for potentials in the Dirac equation with several Lorentz structures, which also allow for the suppression of the matrix structure of second-order equation equation of either the upper or lower components of the Dirac spinor. We derive the general properties of those potentials and list some possible candidates, which include the usual spin-pseudospin potentials, and also 2- and 1-dimensional potentials. An application for a particular physical system in two dimensions, electrons in graphene, is suggested.
We propose a generalization of pseudospin and spin symmetries, the SU(2) symmetries of Dirac equation with scalar and vector mean-field potentials originally found independently in the 70s by Smith and Tassie, and Bell and Ruegg. As relativistic symm
Dirac equation is solved for some exponential potentials, hypergeometric-type potential, generalized Morse potential and Poschl-Teller potential with any spin-orbit quantum number $kappa$ in the case of spin and pseudospin symmetry, respectively. We
Dirac Hamiltonian is scaled in the atomic units $hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% lambda rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativis
The solvability of The Dirac equation is studied for the exponential-type potentials with the pseudospin symmetry by using the parametric generalization of the Nikiforov-Uvarov method. The energy eigenvalue equation, and the corresponding Dirac spino
The complex scaling method is applied to study the resonances of a Dirac particle in a Morse potential. The applicability of the method is demonstrated with the results compared with the available data. It is shown that the present calculations in th